Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740974

RESUMO

Intensive systems with two or three rice (Oryza sativa L.) crops per year account for about 50% of the harvested area for irrigated rice in Asia. Any reduction in productivity or sustainability of these systems has serious implications for global food security. Rice yield trends in the world's longest-running long-term continuous cropping experiment (LTCCE) were evaluated to investigate consequences of intensive cropping and to draw lessons for sustaining production in Asia. Annual production was sustained at a steady level over the 50-y period in the LTCCE through continuous adjustment of management practices and regular cultivar replacement. Within each of the three annual cropping seasons (dry, early wet, and late wet), yield decline was observed during the first phase, from 1968 to 1990. Agronomic improvements in 1991 to 1995 helped to reverse this yield decline, but yield increases did not continue thereafter from 1996 to 2017. Regular genetic and agronomic improvements were sufficient to maintain yields at steady levels in dry and early wet seasons despite a reduction in the yield potential due to changing climate. Yield declines resumed in the late wet season. Slower growth in genetic gain after the first 20 y was associated with slower breeding cycle advancement as indicated by pedigree depth. Our findings demonstrate that through adjustment of management practices and regular cultivar replacement, it is possible to sustain a high level of annual production in irrigated systems under a changing climate. However, the system was unable to achieve further increases in yield required to keep pace with the growing global rice demand.


Assuntos
Produção Agrícola/tendências , Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Biomassa , Produção Agrícola/estatística & dados numéricos , Oryza/genética
2.
Glob Chang Biol ; 27(24): 6436-6453, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606136

RESUMO

Burning has commonly been used to increase forage production and nutrients cycling in grasslands. However, its long-term effects on soil organic carbon (SOC) and nitrogen (N) pools within the aggregates and the relation between aggregates-associated SOC and soil CO2 emissions need further appraisal. This study evaluated the effects of 64 years of annual burning on SOC and N dynamics compared to annual mowing and undisturbed treatments in a grassland experiment established in 1950. Soils were sampled from four depths representing the upper 30 cm layer and fractionated into macroaggregates, microaggregates and silt + clay fractions. The macroaggregates were further fractionated into three occluded fractions. The SOC in the bulk soil and aggregates were correlated to soil CO2 effluxes measured under field conditions. Compared to the undisturbed treatment, annual burning decreased aggregates stability, SOC and N in the upper 30 cm layer by 8%, 5% and 12%, respectively. Grassland mowing induced greater aggregates stability than burning only in the upper 5 cm. Burning also decreased SOC in the large macroaggregates (e.g., 0-5 cm) compared to mowing and the undisturbed grasslands but proportionally increased the microaggregates and their associated SOC. Soil N associated with aggregates decreased largely following grassland burning, for example, by 8.8-fold in the microaggregates within the large macroaggregates at 20-30 cm compared to the undisturbed grassland. Burning also increased soil CO2 emissions by 33 and 16% compared to undisturbed and mowing, respectively. The combustion of fresh C and soil organic matter by fire is likely responsible for the low soil aggregation, high SOC and N losses under burned grassland. These results suggested a direct link between grass burning and SOC losses, a key component for escalating climate change severity. Therefore, less frequent burning or a rotation of burning and mowing should be investigated for sustainable grasslands management.


Assuntos
Carbono , Solo , Carbono/análise , China , Pradaria , Nitrogênio/análise , Poaceae
4.
Front Agron ; 4: 859223, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37680880

RESUMO

There are growing calls to adopt more sustainable forms of agriculture that balance the need to increase production with environmental, human health, and wellbeing concerns. Part of this conversation has included a debate on promoting and mainstreaming neglected and underutilized crop species (NUS) because they represent a more ecologically friendly type of agriculture. We conducted a systematic review to determine the ecosystem services derived from NUS and assess their potential to promote functional ecological diversity, food and nutritional security, and transition to more equitable, inclusive, sustainable and resilient agricultural landscapes and food systems in Africa. Our literature search yielded 35 articles for further analysis. The review showed that NUS provide various provisioning, regulating, cultural, and supporting ecosystem services and several environmental and health co-benefits, dietary diversity, income, sustainable livelihood outcomes, and economic empowerment, especially for women. Importantly, NUS address the three pillars of sustainable development-ecological, social, and economic. Thus, NUS may provide a sustainable, fit-for-purpose transformative ecosystem-based adaptation solution for Africa to transition to more sustainable, healthy, equitable, and resilient agricultural landscapes and food systems.

5.
Glob Food Sec ; 30: 100570, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532218

RESUMO

Plant nutrition plays a central role in the global challenges to produce sufficient and nutritious food, lessen rural poverty, and reducing the environmental footprint of farming. Site-specific nutrient management (SSNM) provides field-specific solutions for smallholder farmers, potentially creating co-benefits of increased productivity and sustainability. Here we perform the first meta-analysis comparing SSNM with farmers' fertilizer practice for maize, rice and wheat using 61 published papers across 11 countries. Relative to the farmer practice, across all crops SSNM increased grain yield by 12% and profitability by 15% with 10% less fertilizer nitrogen applied, thereby improving nitrogen use efficiency and reducing nitrogen pollution to the environment. Delivering it to millions of smallholder farmers requires use of digital decision support tools, but also policy incentives, links with financial and input supply services, and enhancing public-private partnerships.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31426610

RESUMO

About 60% of southern Africa's population lives in rural areas with limited access to basic services and amenities such as clean and safe water, affordable and clean energy, and balanced and nutritious diets. Resource scarcity has direct and indirect impacts on nutrition, human health, and well-being of mostly poor rural communities. Climate change impacts in the region are manifesting through low crop yields, upsurge of vector borne diseases (malaria and dengue fever), and water and food-borne diseases (cholera and diarrhoea). This study applied a water-energy-food (WEF) nexus analytical livelihoods model with complex systems understanding to assess rural livelihoods, health, and well-being in southern Africa, recommending tailor-made adaptation strategies for the region aimed at building resilient rural communities. The WEF nexus is a decision support tool that improves rural livelihoods through integrated resource distribution, planning, and management, and ensures inclusive socio-economic transformation and development, and addresses related sustainable development goals, particularly goals 2, 3, 6 and 7. The integrated WEF nexus index for the region was calculated at 0.145, which is marginally sustainable, and indicating the region's exposure to vulnerabilities, and reveals a major reason why the region fails to meet its developmental targets. The integrated relationship among WEF resources in southern Africa shows an imbalance and uneven resource allocation, utilisation and distribution, which normally results from a 'siloed' approach in resource management. The WEF nexus provides better adaptation options, as it guides decision making processes by identifying priority areas needing intervention, enhancing synergies, and minimising trade-offs necessary for resilient rural communities. Our results identified (i) the trade-offs and unintended negative consequences for poor rural households' livelihoods of current silo approaches, (ii) mechanisms for sustainably enhancing household water, energy and food security, whilst (iii) providing direction for achieving SDGs 2, 3, 6 and 7.


Assuntos
Abastecimento de Alimentos , População Rural , Abastecimento de Água , Aclimatação , África Austral , Mudança Climática , Dieta , Humanos , Estado Nutricional , Cimentos de Resina
7.
Sci Rep ; 8(1): 15506, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341313

RESUMO

Grasslands and savannas are experiencing intensive land-cover change due to woody plant encroachment. This change in land cover is thought to alter soil carbon (C) and nitrogen (N) storage in these ecosystems. Some studies have reported a negative correlation between soil C and N and mean annual precipitation while others have indicated that there is no relationship with mean annual precipitation. We quantified the changes in C and N pools and δ13C and δ15N values to a depth of 1 m in pairs of encroached and adjacent open grassland sites along a precipitation gradient from 300 mm to 1500 mm per annum in South Africa. Our study showed a negative correlation between changes in soil organic C stocks in the 0-100 cm soil layer and mean annual precipitation (MAP). The most humid site (1500 mm MAP) had less C in shrub-encroached sites while the drier sites (300-350 mm MAP) had more C than their paired open grasslands. This study generally showed soil organic C gains in low precipitation areas, with a threshold value between 750 mm and 900 mm. Our threshold value was higher than that found in North America, suggesting that one cannot extrapolate across continents.


Assuntos
Carbono/análise , Clima Desértico , Pradaria , Umidade , Compostos Orgânicos/análise , Solo/química , Madeira/fisiologia , Isótopos de Carbono/análise , Nitrogênio/análise , Isótopos de Nitrogênio/análise , África do Sul
8.
Int J Environ Res Public Health ; 12(6): 5685-711, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26016431

RESUMO

Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture.


Assuntos
Agricultura/métodos , Mudança Climática , Conservação dos Recursos Naturais , Produtos Agrícolas/fisiologia , Secas , Abastecimento de Alimentos , África Subsaariana , Biodiversidade , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa