Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(25): e2000314, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32462775

RESUMO

In this work, a scalable automated approach for fabricating 3D microgranular crystals consisting of desired arrangements of microspheres using holographic optical tweezers and two-photon polymerization is introduced. The ability to position microspheres as desired within lattices of any configuration allows designers to engineer the behavior of new metamaterials that enable advanced applications (e.g., armor that mitigates or redirects shock waves, acoustic lens for underwater imaging, damage detection, and noninvasive surgery, acoustic cloaking, and photonic crystals). Currently, no self-assembly or automated approaches exist with the flexibility necessary to place specific microspheres at specific locations within a crystal. Moreover, most pick-and-place approaches require the manual assembly of spheres one by one and thus do not achieve the speed and precision required to repeatably fabricate practical volumes of engineered crystals. In this paper, the rapid assembly of 4.86 µm diameter silica spheres within differently packed 3D crystal-lattice examples of unprecedented size using fully automated optical tweezers is demonstrated. The optical tweezers independently and simultaneously assemble batches of spheres that are dispensed to the build site via an automated syringe pump where the spheres are then joined together within previously unattainable patterns by curing regions of photocurable prepolymer between each sphere using two-photon polymerization.

2.
Opt Express ; 28(26): 40088-40098, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379542

RESUMO

In this work, we demonstrate the high-throughput fabrication of 3D microparticles using a scanning two-photon continuous flow lithography (STP-CFL) technique in which microparticles are shaped by scanning the laser beam at the interface of laminar co-flows. The results demonstrate the ability of STP-CFL to manufacture high-resolution complex geometries of cell carriers that possess distinct regions with different functionalities. A new approach is presented for printing out-of-plane features on the microparticles. The approach eliminates the use of axial scanning stages, which are not favorable since they induce fluctuations in the flowing polymer media and their scanning speed is slower than the speed of galvanometer mirror scanners.

3.
4.
Opt Express ; 26(10): 13543-13548, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801378

RESUMO

Demand continues to rise for custom-fabricated and engineered colloidal microparticles across a breadth of application areas. This paper demonstrates an improvement in the fabrication rate of high-resolution 3D colloidal particles by using two-photon scanning lithography within a microfluidic channel. To accomplish this, we present (1) an experimental setup that supports fast, 3D scanning by synchronizing a galvanometer, piezoelectric stage, and an acousto-optic switch, and (2) a new technique for modifying the laser's scan path to compensate for the relative motion of the rapidly-flowing photopolymer medium. The result is an instrument that allows for rapid conveyor-belt-like fabrication of colloidal objects with arbitrary 3D shapes and micron-resolution features.

5.
Appl Opt ; 57(22): 6396-6402, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117869

RESUMO

The purpose of this work is to introduce three improvements to automated holographic-optical-tweezers systems that increase the number and speed of particles that can be manipulated simultaneously. First, we address path planning by solving a bottleneck assignment problem, which can reduce total move time by up to 30% when compared with traditional assignment problem solutions. Next, we demonstrate a new strategy to identify and remove undesired (e.g., misshapen or agglomerated) particles. Finally, we employ a controller that combines both closed- and open-loop automation steps, which can increase the overall loop rate and average particle speeds while also utilizing necessary process monitoring checks to ensure that particles reach their destinations. Using these improvements, we show fast reconfiguration of 100 microspheres simultaneously with a closed-loop control rate of 6, and 10 Hz by employing both closed- and open-loop steps. We also demonstrate the closed-loop assembly of a large pattern in a continuously flowing microchannel-based particle-delivery system. The proposed approach provides a promising path toward automatic and scalable assembly of microgranular structures.

6.
Nat Commun ; 10(1): 882, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787283

RESUMO

Early examples of computers were almost exclusively based on mechanical devices. Although electronic computers became dominant in the past 60 years, recent advancements in three-dimensional micro-additive manufacturing technology provide new fabrication techniques for complex microstructures which have rekindled research interest in mechanical computations. Here we propose a new digital mechanical computation approach based on additively-manufacturable micro-mechanical logic gates. The proposed mechanical logic gates (i.e., NOT, AND, OR, NAND, and NOR gates) utilize multi-stable micro-flexures that buckle to perform Boolean computations based purely on mechanical forces and displacements with no electronic components. A key benefit of the proposed approach is that such systems can be additively fabricated as embedded parts of microarchitected metamaterials that are capable of interacting mechanically with their surrounding environment while processing and storing digital data internally without requiring electric power.

7.
Nat Commun ; 9(1): 4594, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389929

RESUMO

Architected materials can achieve impressive shape-changing capabilities according to how their microarchitecture is engineered. Here we introduce an approach for dramatically advancing such capabilities by utilizing wrapped flexure straps to guide the rolling motions of tightly packed micro-cams that constitute the material's microarchitecture. This approach enables high shape-morphing versatility and extreme ranges of deformation without accruing appreciable increases in strain energy or internal stress. Two-dimensional and three-dimensional macroscale prototypes are demonstrated, and the analytical theory necessary to design the proposed materials is provided and packaged as a software tool. An approach that combines two-photon stereolithography and scanning holographic optical tweezers is demonstrated to enable the fabrication of the proposed materials at their intended microscale.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa