Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 26(6): 1550-1553, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876932

RESUMO

Transglycosylation reactions biocatalyzed by the native arabinofuranosidase Araf51 and using d-galactosyl, d-fucosyl and 6-deoxy-6-fluoro-D-galactosyl derivatives as donors and acceptors provided di-to pentahexofuranosides. The immunostimulatory potency of these compounds, and more especially their ability to induce production of TNF-α, was evaluated on the murine macrophage cell line, Raw 264.7. The results obtained showed concentration-dependent and most importantly, structure-dependent responses. Interestingly, oligoarabinofuranosides belonging to the oligopentafuranoside family displayed concentration-, chain length and aglycon-dependent bioactivities irrespective of their fine chemical variations. Thus, neo-oligofuranosides in D-Galf series, as well as their D-Fucf and 6-fluorinated counterparts are indeed potential sources of immunostimulating agents.


Assuntos
Biocatálise , Dissacarídeos/biossíntese , Dissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Configuração de Carboidratos , Linhagem Celular , Dissacarídeos/química , Dissacarídeos/imunologia , Camundongos
2.
Org Biomol Chem ; 12(19): 3080-9, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24700171

RESUMO

The preparation of galactofuranosyl-containing disaccharidic parts of natural glycoconjugates was performed according to a chemo-enzymatic synthesis. Our goals were firstly to develop an alternative approach to standard chemical strategies by limiting the number of reaction and purification steps, and secondly to evaluate the scope of the Araf51 biocatalyst to transfer a galactofuranosyl moiety to a set of pyranosidic acceptors differing from each other by the series, the anomeric configuration as well as the conformation. The study of binding mode of the resulting disaccharides was also performed by molecular modeling and showed significant differences between (1→2)- and (1→6)-linked disaccharides.


Assuntos
Dissacarídeos/biossíntese , Glicosídeo Hidrolases/metabolismo , Biocatálise , Dissacarídeos/química , Simulação de Dinâmica Molecular , Estereoisomerismo
3.
Org Biomol Chem ; 8(9): 2092-102, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20401386

RESUMO

D-Galactofuranosyl-containing conjugates are ubiquitous in many pathogenic microorganisms, but completely absent from mammals. As they may constitute interesting pharmacophores, recent works have been dedicated to their preparation. Besides well-reported chemical procedures, enzymatic approaches are still limited, mainly due to the lack of the corresponding biocatalysts. Based on the similarity between chemical structures, the arabinofuranosyl hydrolase Araf51 from Clostridium thermocellum was expected to recognize both the L-Araf motif and its D-Galf analogue. Molecular dynamics and STD-NMR were firstly used to confirm this hypothesis and increase our knowledge of the active site. Interestingly, this arabinofuranosidase was not only able to hydrolyze galactosyl derivatives, but was also really efficient in catalyzing oligomerisations using p-nitrophenyl furanosides as donors. The structures of the products obtained were determined using mass spectrometry and NMR. Amongst them, all the possible regioisomers of di-arabino and -galactofuranosides were synthesized, and the ratio of each regioisomer was easily tuned with respect to the reaction time. Especially, the galactofuranobioside displaying the biologically relevant sequence beta-D-Galf-(1,6)-beta-D-Galf was enzymatically prepared for the first time. All fractions going from di- to penta-arabino- and galactofuranosides were tested for their ability in eliciting the production of TNF-alpha. Interesting immunological properties were observed with arabinofuranosides as short as three sugar residues.


Assuntos
Adjuvantes Imunológicos/síntese química , Arabinose/síntese química , Galactosídeos/síntese química , Glicosídeo Hidrolases/metabolismo , Simulação de Dinâmica Molecular , Adjuvantes Imunológicos/química , Arabinose/análogos & derivados , Arabinose/química , Biocatálise , Configuração de Carboidratos , Sequência de Carboidratos , Galactosídeos/química , Glicosídeo Hidrolases/química , Cinética , Dados de Sequência Molecular
5.
Carbohydr Res ; 356: 44-61, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22554502

RESUMO

There is no doubt now that the synthesis of compounds of varying complexity such as saccharides and derivatives thereof continuously grows with enzymatic methods. This review focuses on recent basic knowledge on enzymes specifically involved in the biosynthesis and degradation of furanosyl-containing polysaccharides and conjugates. Moreover, and when possible, biocatalyzed approaches, alternative to standard synthesis, will be detailed in order to strengthen the high potential of these biocatalysts to go further with the preparation of rare furanosides. Interesting results will be also proposed with chemo-enzymatic processes based on nonfuranosyl-specific enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Glicoconjugados/biossíntese , Monossacarídeos/biossíntese , Polissacarídeos/biossíntese , Proteínas de Bactérias/química , Biocatálise , Sequência de Carboidratos , Proteínas Fúngicas/química , Galactose/análogos & derivados , Galactose/química , Galactose/metabolismo , Glicoconjugados/síntese química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Lipase/química , Lipase/metabolismo , Dados de Sequência Molecular , Monossacarídeos/síntese química , Polissacarídeos/síntese química , Difosfato de Uridina/análogos & derivados , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa