Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 66(1): 35-43, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34491440

RESUMO

Collaborative networks that involve the compilation of observations from diverse sources can provide important data, but are difficult to maintain over long periods. The International Phenological Garden (IPG) network, begun in 1959 and still functioning 60 years later, has been no exception. Here we document its history, its monitored 23 species (initially all propagated by cloning), and the locations and years of data contribution of its 131 gardens, of which 63 from 19 countries contributed data in 2021. The decision to use clones, rather than multiple, locally adapted individuals, was based on the idea that this would "control" for genetic effects, and it affects the applicability of the data and duration of the network. We also describe the overlap among the IPG network, the Pan-European Phenology network (PEP725), and the phenological data offered by the German Weather Service. Sustainable data storage and accessibility, as well as the continued monitoring of all 23 species/clones, are under discussion at the moment, as is the fate of other phenological networks, despite a politically mandatory plant-based climate-change monitoring.


Assuntos
Curadoria de Dados , Jardins , Mudança Climática , Humanos , Estações do Ano , Temperatura , Tempo (Meteorologia)
2.
Glob Chang Biol ; 26(3): 1808-1819, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31724292

RESUMO

Spring phenology of temperate trees has advanced worldwide in response to global warming. However, increasing temperatures may not necessarily lead to further phenological advance, especially in the warmer latitudes because of insufficient chilling and/or shorter day length. Determining the start of the forcing phase, that is, when buds are able to respond to warmer temperatures in spring, is therefore crucial to predict how phenology will change in the future. In this study, we used 4,056 leaf-out date observations during the period 1969-2017 for clones of European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) planted in 63 sites covering a large latitudinal gradient (from Portugal ~41°N to Norway ~63°N) at the International Phenological Gardens in order to (a) evaluate how the sensitivity periods to forcing and chilling have changed with climate warming, and (b) test whether consistent patterns occur along biogeographical gradients, that is, from colder to warmer environments. Partial least squares regressions suggest that the length of the forcing period has been extended over the recent decades with climate warming in the colder latitudes but has been shortened in the warmer latitudes for both species, with a more pronounced shift for beech. We attribute the lengthening of the forcing period in the colder latitudes to earlier opportunities with temperatures that can promote bud development. In contrast, at warmer or oceanic climates, the beginning of the forcing period has been delayed, possibly due to insufficient chilling. However, in spite of a later beginning of the forcing period, spring phenology has continued to advance at these areas due to a faster satisfaction of heat requirements induced by climate warming. Overall, our results support that ongoing climate warming will have different effects on the spring phenology of forest trees across latitudes due to the interactions between chilling, forcing and photoperiod.


Assuntos
Fagus , Quercus , Mudança Climática , Noruega , Portugal , Estações do Ano , Temperatura , Árvores
3.
Int J Biometeorol ; 62(2): 217-228, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28965141

RESUMO

Spring frost can be a limiting factor in sweet cherry (Prunus avium L.) production. Rising temperatures in spring force the development of buds, whereby their vulnerability to freezing temperatures continuously increases. With the beginning of blossom, flowers can resist only light frosts without any significant damage. In this study, we investigated the risk of spring frost damages during cherry blossom for historical and future climate conditions at two different sites in NE (Berlin) and SW Germany (Geisenheim). Two phenological models, developed on the basis of phenological observations at the experimental sweet cherry orchard in Berlin-Dahlem and validated for endodormancy release and for warmer climate conditions (already published), were used to calculate the beginning of cherry blossom in Geisenheim, 1951-2015 (external model validation). Afterwards, on the basis of a statistical regionalisation model WETTREG (RCP 8.5), the frequency of frost during cherry blossom was calculated at both sites for historical (1971-2000) and future climate conditions (2011-2100). From these data, we derived the final flower damage, defined as the percentage of frozen flowers due to single or multiple frost events during blossom. The results showed that rising temperatures in this century can premature the beginning of cherry blossom up to 17 days at both sites, independent of the used phenological model. The frequency and strength of frost was characterised by a high temporal and local variability. For both sites, no significant increase in frost frequency and frost damage during blossom was found. In Geisenheim, frost damages significantly decreased from the middle of the twenty-first century. This study additionally emphasises the importance of reliable phenological models which not only work for current but also for changed climate conditions and at different sites. The date of endodormancy release should always be a known parameter in chilling/forcing models.


Assuntos
Mudança Climática , Flores/crescimento & desenvolvimento , Congelamento , Modelos Teóricos , Prunus avium/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Alemanha , Estações do Ano
4.
Int J Biometeorol ; 62(6): 1109-1113, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29455297

RESUMO

The Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 "Establishing a European phenological data platform for climatological applications" working as a single access point for European-wide plant phenological data. So far, 32 European meteorological services and project partners from across Europe have joined and supplied data collected by volunteers from 1868 to the present for the PEP725 database. Most of the partners actively provide data on a regular basis. The database presently holds almost 12 million records, about 46 growing stages and 265 plant species (including cultivars), and can be accessed via http://www.pep725.eu/ . Users of the PEP725 database have studied a diversity of topics ranging from climate change impact, plant physiological question, phenological modeling, and remote sensing of vegetation to ecosystem productivity.


Assuntos
Bases de Dados Factuais , Estações do Ano , Europa (Continente)
5.
Molecules ; 23(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772774

RESUMO

Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.


Assuntos
Metabolismo Energético , Flores/crescimento & desenvolvimento , Oxirredução , Dormência de Plantas , Prunus avium/fisiologia , Antioxidantes/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Fenóis/metabolismo
6.
Agron Sustain Dev ; 38(6): 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30873223

RESUMO

Grain legumes produce high-quality protein for food and feed, and potentially contribute to sustainable cropping systems, but they are grown on only 1.5% of European arable land. Low temporal yield stability is one of the reasons held responsible for the low proportion of grain legumes, without sufficient quantitative evidence. The objective of this study was to compare the yield stability of grain legumes with other crop species in a northern European context and accounting for the effects of scale in the analysis and the data. To avoid aggregation biases in the yield data, we used data from long-term field experiments. The experiments included grain legumes (lupin, field pea, and faba bean), other broad-leaved crops, spring, and winter cereals. Experiments were conducted in the UK, Sweden, and Germany. To compare yield stability between grain legumes and other crops, we used a scale-adjusted yield stability indicator that accounts for the yield differences between crops following Taylor's Power Law. Here, we show that temporal yield instability of grain legumes (30%) was higher than that of autumn-sown cereals (19%), but lower than that of other spring-sown broad-leaved crops (35%), and only slightly greater than spring-sown cereals (27%). With the scale-adjusted yield stability indicator, we estimated 21% higher yield stability for grain legumes compared to a standard stability measure. These novel findings demonstrate that grain legume yields are as reliable as those of other spring-sown crops in major production systems of northern Europe, which could influence the current negative perception on grain legume cultivation. Initiatives are still needed to improve the crops agronomy to provide higher and more stable yields in future.

7.
Int J Biometeorol ; 60(1): 123-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26022603

RESUMO

Spring frost is a significant production hazard in nearly all temperate fruit-growing regions. Sweet cherries are among the first fruit varieties starting their development in spring and therefore highly susceptible to late frost. Temperatures at which injuries are likely to occur are widely published, but their origin and determination methods are not well documented. In this study, a standardized method was used to investigate critical frost temperatures for the sweet cherry cultivar 'Summit' under controlled conditions. Twigs were sampled at four development stages ("side green," "green tip," "open cluster," "full bloom") and subjected to three frost temperatures (-2.5, -5.0, -10.0 °C). The main advantage of this method, compared to other approaches, was that the exposition period and the time interval required to reach the target temperature were always constant (2 h). Furthermore, then, the twigs were placed in a climate chamber until full bloom, before the examination of the flowers and not further developed buds started. For the first two sampling stages (side green, green tip), the number of buds found in open cluster, "first white," and full bloom at the evaluation date decreased with the strength of the frost treatment. The flower organs showed different levels of cold hardiness and became more vulnerable in more advanced development stages. In this paper, we developed four empirical functions which allow calculating possible frost damages on sweet cherry buds or flowers at the investigated development stages. These equations can help farmers to estimate possible frost damages on cherry buds due to frost events. However, it is necessary to validate the critical temperatures obtained in laboratory with some field observations.


Assuntos
Frutas/crescimento & desenvolvimento , Gelo/efeitos adversos , Prunus avium/crescimento & desenvolvimento , Algoritmos , Flores/crescimento & desenvolvimento , Estações do Ano , Temperatura
8.
Int J Biometeorol ; 58(5): 703-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23456375

RESUMO

Seven different model approaches to calculate the onset of sour cherry blossom for the main growing regions in Rhineland-Palatinate (Germany) were compared. Three of the approaches were pure forcing models (M1, M2, M2DL) and the remaining four models were combined sequential chilling-forcing (CF) models. Model M1 was the commonly used growing degree day (GDD) model in which the starting date of temperature accumulation (t1), the base temperature (TBF) and the forcing requirement F* were optimized on the basis of observed data. Because of a relatively late optimal starting date (t1=1 March), the model can be applied only to calculate the onset of cherry blossom for present climate conditions. In order to develop forcing models that could possibly be used to estimate possible shifts in the timing of cherry blossom due to climate change, the starting date t 1 of the models was intentionally set to 1 January (M2, M2DL). Unfortunately, model M2 failed in both the optimization and validation period. The introduction of a daylength term (DL) in model M2DL improved model performance. In order to project possible shifts in the timing of plant phenological events, combined CF-models are preferred over pure GDD-models. For this reason four CF-models were developed with (M3DL, M4DL) and without (M3, M4) consideration of daylength in the GDD-approach. The chilling requirement was calculated using chilling hours (M3, M3DL) and chill portions (M4, M4DL). Both models without daylength estimated implausible model parameters and failed model validation. However, models M3DL and M4DL showed meaningful model parameter estimations and the error between modelled and observed data was markedly reduced. Moreover, the models optimized and validated (internal validation) for one sour cherry growing region in Germany, were applied successfully to calculate the beginning of the blossom period in other regions in Europe and even at one station in North America (external validation).


Assuntos
Mudança Climática , Flores/fisiologia , Modelos Teóricos , Prunus/fisiologia , Calibragem , Europa (Continente) , Reprodutibilidade dos Testes , Estações do Ano , Análise Espacial , Temperatura , Wisconsin
9.
Int J Biometeorol ; 57(2): 287-97, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22588698

RESUMO

The aim of this study was to select a phenological model that is able to calculate the beginning of egg laying of Great Tit (Parus major) for both current and future climate conditions. Four models (M1-M4) were optimised on long-term phenological observations from the Ecological Research Centre Schlüchtern (Hessen/Germany). Model M1 was a common thermal time model that accumulates growing degree days (GDD) on an optimised starting date t (1). Since egg laying of Great Tit is influenced not only by air temperature but also by photoperiod, model M1 was extended by a daylength term to give M2. The other two models, M3 and M4, correspond to M1 and M2, but t (1) was intentionally set to 1 January, in order to consider already rising temperatures at the beginning of the year. A comparison of the four models led to following results: model M1 had a relatively high root mean square error at verification (RMSE(ver)) of more than 4 days and can be used only to calculate the start of egg laying for current climate conditions because of the relatively late starting date for GDD calculation. The model failed completely if the starting date was set to 1 January (M3). Consideration of a daylength term in models M2 and M4 improved the performance of both models strongly (RMSE(ver) of only 3 days or less), increased the credibility of parameter estimation, and was a precondition to calculate reliable projections in the timing of egg laying in birds for the future. These results confirm that the start of egg laying of Great Tit is influenced not only by air temperature, but also by photoperiod. Although models M2 and M4 both provide comparably good results for current climate conditions, we recommend model M4-with a starting date of temperature accumulation on 1 January-for calculating possible future shifts in the commencement of egg laying. Our regional projections in the start of egg laying, based on five regional climate models (RCMs: REMO-UBA, ECHAM5-CLM, HadCM3-CLM, WETTREG-0, WETTREG-1, GHG emission scenario A1B), indicate that in the near future (2011-2040) no significant change will take place. However, in the mid- (2041-2070) and long-term (2071-2100) range the beginning of egg laying could be advanced significantly by up to 11 days on average of all five RCMs. This result corresponds to the already observed shift in the timing of egg laying by about 1 week, due mainly to an abrupt increase in air temperature at the end of the 1980s by 1.2 K between April and May. The use of five regional climate scenarios additionally allowed to estimate uncertainties among the RCMs.


Assuntos
Mudança Climática , Modelos Teóricos , Oviparidade , Passeriformes/fisiologia , Animais , Feminino , Temperatura , Fatores de Tempo
10.
Metabolites ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36837849

RESUMO

Here we report on metabolites found in a targeted profiling of 'Summit' flower buds for nine years, which could be indicators for the timing of endodormancy release (t1) and beginning of ontogenetic development (t1*). Investigated metabolites included chrysin, arabonic acid, pentose acid, sucrose, abscisic acid (ABA), and abscisic acid glucose ester (ABA-GE). Chrysin and water content showed an almost parallel course between leaf fall and t1*. After 'swollen bud', water content raised from ~60 to ~80% at open cluster, while chrysin content decreased and lost its function as an acetylcholinesterase inhibitor. Both parameters can be suitable indicators for t1*. Arabonic acid showed a clear increase after t1*. Pentose acid would be a suitable metabolite to identify t1 and t1*, but would not allow describing the ecodormancy phase, because of its continuously low value during this time. Sucrose reached a maximum during ecodormancy and showed a significant correlation with air temperature, which confirms its cryoprotective role in this phase. The ABA content showed maximum values during endodormancy and decreased during ecodormancy, reaching 50% of its content t1 at t1*. It appears to be the key metabolite to define the ecodormancy phase. The ABA-GE was present at all stages and phases and was much higher than the ABA content and is a readily available storage pool in cherry buds.

11.
Metabolites ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35323690

RESUMO

Winter dormancy is still a "black box" in phenological models, because it evades simple observation. This study presents the first step in the identification of suitable metabolites which could indicate the timing and length of dormancy phases for the sweet cherry cultivar 'Summit'. Global metabolite profiling detected 445 named metabolites in flower buds, which can be assigned to different substance groups such as amino acids, carbohydrates, phytohormones, lipids, nucleotides, peptides and some secondary metabolites. During the phases of endo- and ecodormancy, the energy metabolism in the form of glycolysis and the tricarboxylic acid (TCA) cycle was shut down to a minimum. However, the beginning of ontogenetic development was closely related to the up-regulation of the carbohydrate metabolism and thus to the generation of energy for the growth and development of the sweet cherry buds. From the 445 metabolites found in cherry buds, seven were selected which could be suitable markers for the ecodormancy phase, whose duration is limited by the date of endodormancy release (t1) and the beginning of ontogenetic development (t1*). With the exception of abscisic acid (ABA), which has been proven to control bud dormancy, all of these metabolites show nearly constant intensity during this phase.

12.
Plants (Basel) ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956522

RESUMO

Models used to predict the onset of fruit tree blossom under changed climate conditions should be physiologically based as much as possible. Pure optimized phenology models carry the risk of unrealistic predictions due to a misinterpretation of metabolic processes. This was the motivation determining the relevant phases for chill and heat accumulation, which induces cherry blossom (cv. Summit). Investigations are based on 8 years of observational and analytical data, as well as on controlled experiments. For 'Summit' buds, to be released from endodormancy, 43 chill portions from 1 September are necessary. After endodormancy release (t1), on average on 30 November, no further chilling is required, because no correlation between chill accumulation during ecodormancy and the subsequent heat accumulation until 'Summit' blossom exist. The declining amount of heat, which induces cherry blossom after t1-shown in several forcing experiments-seems to be the result of the declining bud's abscisic acid (ABA) content, up to ~50% until the beginning of ontogenetic development. Shortly after t1, when the bud's ABA content is high, a huge amount of heat is necessary to induce cherry blossom under controlled conditions. Heat requirement reduces during ecodormancy along with the reduction in the ABA content. According to these findings, plant development during ecodormancy is suppressed by low temperatures in the orchard and a slowly declining bud's ABA content. These results should lead to a better consideration of the ecodormancy phase in phenology models.

13.
Int J Biometeorol ; 50(2): 96-104, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16075263

RESUMO

Recent climate changes have had distinct impacts on plant development in many parts of the world. Higher air temperatures, mainly since the end of the 1980s, have led to advanced timing of phenological phases and consequently to an extension of the general growing season. For this reason it is interesting to know how plants will respond to future climate change. In this study simple phenological models have been developed to estimate the impact of climate change on the natural vegetation in Saxony. The estimations are based on a regional climate scenario for the state of Saxony. The results indicate that changes in the timing of phenophases could continue in the future. Due to distinct temperature changes in winter and in summer, mainly the spring and summer phases will be advanced. Spring phenophases, such as leafing or flowering, show the strongest trends. Depending on the species, the average timing of these phenophases could be advanced by 3-27 days by 2050. Phenophases in autumn show relatively small changes. Thus, the annual growth period of individual trees will be further extended, mainly because of the shift of spring phases. Frequent droughts in summer and in autumn can compensate for the earlier leafing of trees, because in this case leaf colouring and leaf fall would start some weeks earlier. In such cases, the growing period would not be really extended, but shifted to the beginning of the year.


Assuntos
Clima , Desenvolvimento Vegetal , Alemanha , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa