Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7961): 548-554, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100905

RESUMO

Changes in patterns of activity within the medial prefrontal cortex enable rodents, non-human primates and humans to update their behaviour to adapt to changes in the environment-for example, during cognitive tasks1-5. Parvalbumin-expressing inhibitory neurons in the medial prefrontal cortex are important for learning new strategies during a rule-shift task6-8, but the circuit interactions that switch prefrontal network dynamics from maintaining to updating task-related patterns of activity remain unknown. Here we describe a mechanism that links parvalbumin-expressing neurons, a new callosal inhibitory connection, and changes in task representations. Whereas nonspecifically inhibiting all callosal projections does not prevent mice from learning rule shifts or disrupt the evolution of activity patterns, selectively inhibiting only callosal projections of parvalbumin-expressing neurons impairs rule-shift learning, desynchronizes the gamma-frequency activity that is necessary for learning8 and suppresses the reorganization of prefrontal activity patterns that normally accompanies rule-shift learning. This dissociation reveals how callosal parvalbumin-expressing projections switch the operating mode of prefrontal circuits from maintenance to updating by transmitting gamma synchrony and gating the ability of other callosal inputs to maintain previously established neural representations. Thus, callosal projections originating from parvalbumin-expressing neurons represent a key circuit locus for understanding and correcting the deficits in behavioural flexibility and gamma synchrony that have been implicated in schizophrenia and related conditions9,10.


Assuntos
Aprendizagem , Inibição Neural , Vias Neurais , Neurônios , Parvalbuminas , Córtex Pré-Frontal , Animais , Camundongos , Aprendizagem/fisiologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Esquizofrenia/fisiopatologia , Corpo Caloso/citologia , Corpo Caloso/fisiologia , Inibição Neural/fisiologia
2.
Cereb Cortex ; 28(11): 3868-3879, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028946

RESUMO

Human mutations in CNTNAP2 are associated with an array of neuropsychiatric and neurological syndromes, including speech and language disorders, epilepsy, and autism spectrum disorder (ASD). We examined Cntnap2's expression and function in GABAergic cortical interneurons (CINs), where its RNA is present at highest levels in chandelier neurons, PV+ neurons and VIP+ neurons. In vivo functions were studied using both constitutive Cntnap2 null mice and a transplantation assay, the latter to assess cell autonomous phenotypes of medial ganglionic eminence (MGE)-derived CINs. We found that Cntnap2 constitutive null mutants had normal numbers of MGE-derived CINs, but had reduced PV+ CINs. Transplantation assays showed that Cntnap2 cell autonomously regulated the physiology of parvalbumin (PV)+, fast-spiking CINs; no phenotypes were observed in somatostatin+, regular spiking, CINs. We also tested the effects of 4 human CNTNAP2 ASD missense mutations in vivo, and found that they impaired PV+ CIN development. Together, these data reveal that reduced CNTNAP2 function impairs PV+ CINs, a cell type with important roles in regulating cortical circuits.


Assuntos
Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Alelos , Animais , Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Córtex Somatossensorial/fisiologia , Telencéfalo/crescimento & desenvolvimento
3.
Cereb Cortex ; 27(9): 4303-4313, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27497284

RESUMO

Prenatally, the cytokine CXCL12 regulates cortical interneuron migration, whereas its postnatal functions are poorly understood. Here, we report that CXCL12 is expressed postnatally in layer V pyramidal neurons and localizes on their cell bodies in the medial prefrontal cortex (mPFC), while its receptors CXCR4/CXCR7 localize to the axon terminals of parvalbumin (PV) interneurons. Conditionally eliminating CXCL12 in neonatal layer V pyramidal neurons led to decreased axon targeting and reduced inhibitory perisomatic synapses from PV+ basket interneurons onto layer V pyramidal neurons. Consequently, the mPFC of Cxcl12 conditional mutants displayed attenuated inhibitory postsynaptic currents onto layer V pyramidal neurons. Thus, postnatal CXCL12 signaling promotes a specific interneuron circuit that inhibits mPFC activity.


Assuntos
Quimiocina CXCL12/metabolismo , Interneurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Sinapses/fisiologia , Animais , Axônios/metabolismo , Quimiocina CXCL12/genética , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos Transgênicos , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Receptores CXCR4/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Hum Mol Genet ; 23(R1): R64-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24824218

RESUMO

Optogenetic approaches have been rapidly adopted by neuroscientists in order to control the activity of neurons with high temporal, spatial and genetic specificity. By expressing light-sensitive microbial opsins within a genetically-specified population of neurons, flashes of light can be used to activate these opsins and thereby modulate the targeted cells in a spatially and temporally defined manner. Thus, optogenetics can be used to activate very specific sets of neurons or projections at particular times, either within freely behaving animals, or in reduced preparations such as brain slices. These techniques are ideally suited for dissecting complex interactions within neuronal circuits, and for testing ideas about how changes in these circuits might contribute to abnormal behaviors in the context of neuropsychiatric disorders. Here, we review several studies that have used optogenetics to dissect circuits implicated in schizophrenia, and elucidate the ways in which specific components of these circuits may contribute to normal or abnormal behavior. Specifically, optogenetics can be used to label and excite neurons that express particular genes, in order to study how they interact with other neurons and/or modulate behavior. Optogenetics can also be used to study changes in these interactions or behavioral effects following genetic manipulations. In this way, optogenetics may serve to 'fill in the gaps' between genes, circuits and behavior, in a manner that should help to translate the rapidly growing list of genes associated with neuropsychiatric disorders into specific pathophysiological mechanisms.


Assuntos
Vias Neurais/fisiopatologia , Optogenética/métodos , Esquizofrenia/genética , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Dopaminérgicos/uso terapêutico , Humanos , Interneurônios/fisiologia , Neurônios/fisiologia , Opsinas/metabolismo , Esquizofrenia/terapia
5.
Proc Natl Acad Sci U S A ; 109(34): 13829-34, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22753490

RESUMO

Inhibitory interneurons regulate the responses of cortical circuits. In auditory cortical areas, inhibition from these neurons narrows spectral tuning and shapes response dynamics. Acute disruptions of inhibition expand spectral receptive fields. However, the effects of long-term perturbations of inhibitory circuitry on auditory cortical responses are unknown. We ablated ~30% of dendrite-targeting cortical inhibitory interneurons after the critical period by studying mice with a conditional deletion of Dlx1. Following the loss of interneurons, baseline firing rates rose and tone-evoked responses became less sparse in auditory cortex. However, contrary to acute blockades of inhibition, the sizes of spectral receptive fields were reduced, demonstrating both higher thresholds and narrower bandwidths. Furthermore, long-latency responses at the edge of the receptive field were absent. On the basis of changes in response dynamics, the mechanism for the reduction in receptive field size appears to be a compensatory loss of cortico-cortically (CC) driven responses. Our findings suggest chronic conditions that feature changes in inhibitory circuitry are not likely to be well modeled by acute network manipulations, and compensation may be a critical component of chronic neuronal conditions.


Assuntos
Estimulação Acústica , Córtex Auditivo/fisiologia , Proteínas de Homeodomínio/genética , Interneurônios/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Fatores de Transcrição/genética , Potenciais de Ação/fisiologia , Animais , Dendritos/metabolismo , Eletroencefalografia/métodos , Feminino , Masculino , Camundongos , Camundongos Knockout , Modelos Genéticos , Neurônios/efeitos dos fármacos , Fenótipo , Fatores de Tempo
6.
Proc Natl Acad Sci U S A ; 106(13): 5377-82, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19276107

RESUMO

Bidirectional synaptic plasticity during development ensures that appropriate synapses in the brain are strengthened and maintained while inappropriate connections are weakened and eliminated. This plasticity is well illustrated in mouse visual cortex, where monocular deprivation during early postnatal development leads to a rapid depression of inputs from the deprived eye and a delayed strengthening of inputs from the non-deprived eye. The mechanisms that control these bidirectional synaptic modifications remain controversial. Here we demonstrate, both in vitro and in vivo, that genetic deletion or reduction of the NR2A NMDA receptor subunit impairs activity-dependent weakening of synapses and enhances the strengthening of synapses. Although brief monocular deprivation in juvenile WT mice normally causes a profound depression of the deprived-eye response without a change in the non-deprived eye response, NR2A-knockout mice fail to exhibit deprivation-induced depression and instead exhibit precocious potentiation of the non-deprived eye inputs. These data support the hypothesis that a reduction in the NR2A/B ratio during monocular deprivation is permissive for the compensatory potentiation of non-deprived inputs.


Assuntos
Dominância Ocular , Receptores de N-Metil-D-Aspartato/análise , Córtex Visual , Animais , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Visão Monocular
7.
Nat Neurosci ; 23(7): 892-902, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451483

RESUMO

Organisms must learn new strategies to adapt to changing environments. Activity in different neurons often exhibits synchronization that can dynamically enhance their communication and might create flexible brain states that facilitate changes in behavior. We studied the role of gamma-frequency (~40 Hz) synchrony between prefrontal parvalbumin (PV) interneurons in mice learning multiple new cue-reward associations. Voltage indicators revealed cell-type-specific increases of cross-hemispheric gamma synchrony between PV interneurons when mice received feedback that previously learned associations were no longer valid. Disrupting this synchronization by delivering out-of-phase optogenetic stimulation caused mice to perseverate on outdated associations, an effect not reproduced by in-phase stimulation or out-of-phase stimulation at other frequencies. Gamma synchrony was specifically required when new associations used familiar cues that were previously irrelevant to behavioral outcomes, not when associations involved new cues or for reversing previously learned associations. Thus, gamma synchrony is indispensable for reappraising the behavioral salience of external cues.


Assuntos
Adaptação Fisiológica/fisiologia , Aprendizagem por Associação/fisiologia , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Sinais (Psicologia) , Feminino , Lateralidade Funcional , Masculino , Camundongos , Parvalbuminas/metabolismo , Recompensa
8.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33199411

RESUMO

Cortical interneuron (CIN) dysfunction is thought to play a major role in neuropsychiatric conditions like epilepsy, schizophrenia and autism. It is therefore essential to understand how the development, physiology, and functions of CINs influence cortical circuit activity and behavior in model organisms such as mice and primates. While transgenic driver lines are powerful tools for studying CINs in mice, this technology is limited in other species. An alternative approach is to use viral vectors such as AAV, which can be used in multiple species including primates and also have potential for therapeutic use in humans. Thus, we sought to discover gene regulatory enhancer elements (REs) that can be used in viral vectors to drive expression in specific cell types. The present study describes the systematic genome-wide identification of putative REs (pREs) that are preferentially active in immature CINs by histone modification chromatin immunoprecipitation and sequencing (ChIP-seq). We evaluated two novel pREs in AAV vectors, alongside the well-established Dlx I12b enhancer, and found that they drove CIN-specific reporter expression in adult mice. We also showed that the identified Arl4d pRE could drive sufficient expression of channelrhodopsin for optogenetic rescue of behavioral deficits in the Dlx5/6+/- mouse model of fast-spiking CIN dysfunction.


Assuntos
Transtorno Autístico , Interneurônios , Elementos Reguladores de Transcrição , Esquizofrenia , Animais , Animais Geneticamente Modificados , Dependovirus , Vetores Genéticos , Camundongos , Fatores de Transcrição
9.
Cell Rep ; 11(6): 944-956, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25937288

RESUMO

Mutations in the phosphatase PTEN are strongly implicated in autism spectrum disorder (ASD). Here, we investigate the function of Pten in cortical GABAergic neurons using conditional mutagenesis in mice. Loss of Pten results in a preferential loss of SST(+) interneurons, which increases the ratio of parvalbumin/somatostatin (PV/SST) interneurons, ectopic PV(+) projections in layer I, and inhibition onto glutamatergic cortical neurons. Pten mutant mice exhibit deficits in social behavior and changes in electroencephalogram (EEG) power. Using medial ganglionic eminence (MGE) transplantation, we test for cell-autonomous functional differences between human PTEN wild-type (WT) and ASD alleles. The PTEN ASD alleles are hypomorphic in regulating cell size and the PV/SST ratio in comparison to WT PTEN. This MGE transplantation/complementation assay is efficient and is generally applicable for functional testing of ASD alleles in vivo.


Assuntos
Alelos , Transtorno do Espectro Autista/genética , Mutação/genética , PTEN Fosfo-Hidrolase/genética , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Animais , Contagem de Células , Morte Celular , Proliferação de Células , Forma Celular , Eletroencefalografia , Neurônios GABAérgicos/metabolismo , Ritmo Gama , Humanos , Integrases/metabolismo , Interneurônios/metabolismo , Relações Interpessoais , Eminência Mediana/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Piramidais/metabolismo , Transdução de Sinais
10.
Neuron ; 85(6): 1332-43, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25754826

RESUMO

Abnormalities in GABAergic interneurons, particularly fast-spiking interneurons (FSINs) that generate gamma (γ; ∼30-120 Hz) oscillations, are hypothesized to disrupt prefrontal cortex (PFC)-dependent cognition in schizophrenia. Although γ rhythms are abnormal in schizophrenia, it remains unclear whether they directly influence cognition. Mechanisms underlying schizophrenia's typical post-adolescent onset also remain elusive. We addressed these issues using mice heterozygous for Dlx5/6, which regulate GABAergic interneuron development. In Dlx5/6(+/-) mice, FSINs become abnormal following adolescence, coinciding with the onset of cognitive inflexibility and deficient task-evoked γ oscillations. Inhibiting PFC interneurons in control mice reproduced these deficits, whereas stimulating them at γ-frequencies restored cognitive flexibility in adult Dlx5/6(+/-) mice. These pro-cognitive effects were frequency specific and persistent. These findings elucidate a mechanism whereby abnormal FSIN development may contribute to the post-adolescent onset of schizophrenia endophenotypes. Furthermore, they demonstrate a causal, potentially therapeutic, role for PFC interneuron-driven γ oscillations in cognitive domains at the core of schizophrenia.


Assuntos
Cognição/fisiologia , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Córtex Pré-Frontal/fisiopatologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Parvalbuminas/metabolismo , Córtex Pré-Frontal/fisiologia , Esquizofrenia/fisiopatologia
11.
Neuron ; 66(4): 493-500, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20510854

RESUMO

Brief monocular deprivation (MD) shifts ocular dominance (OD) in primary visual cortex by causing depression of responses to the deprived eye. Here we address the extent to which the shift is expressed by a modification of excitatory synaptic transmission. An OD shift was first induced with 3 days of MD, and then the influences of intracortical polysynaptic inhibitory and excitatory synapses were pharmacologically removed, leaving only "feedforward" thalamocortical synaptic currents. The results show that the rapid OD shift following MD is strongly expressed at the level of thalamocortical synaptic transmission.


Assuntos
Potenciais de Ação/fisiologia , Dominância Ocular/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa/métodos , Privação Sensorial/fisiologia
12.
Neuron ; 53(4): 495-502, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17296552

RESUMO

Light deprivation lowers the threshold for long-term depression (LTD) and long-term potentiation (LTP) in visual cortex by a process termed metaplasticity, but the mechanism is unknown. The decreased LTD/P threshold correlates with a decrease in the ratio of NR2A to NR2B subunits of cortical NMDA receptors (NMDARs) and a slowing of NMDAR-mediated excitatory postsynaptic currents (EPSCs). However, whether and how changes in NR2 subunit expression contribute to LTD and LTP have been controversial. In the present study, we used an NR2A knockout (KO) mouse to examine the role of this subunit in the experience-dependent modulation of NMDAR properties, LTD, and LTP. We found that deletion of NR2A abrogates the effects of visual experience on NMDAR EPSCs and prevents metaplasticity of LTP and LTD. These data support the hypothesis that experience-dependent changes in NR2A/B are functionally significant and yield a mechanism for an adjustable synaptic modification threshold in visual cortex.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Córtex Visual/citologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Análise de Variância , Animais , Animais Recém-Nascidos , Química Encefálica/genética , Adaptação à Escuridão/fisiologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Regulação da Expressão Gênica/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Receptores de N-Metil-D-Aspartato/deficiência , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa