Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 537-547, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38108625

RESUMO

In this article, we discuss the synthesis of eight novel zirconium and hafnium complexes containing amidoxime ligands as potential precursors for atomic layer deposition (ALD). Two amidoximes, viz., (E)-N'-hydroxy-N,N-dimethylacetimidamide (mdaoH) and (Z)-N'-hydroxy-N,N-dimethylpivalimidamide (tdaoH), along with their Zr and Hf homoleptic complexes, Zr(mdao)4 (1), Hf(mdao)4 (2), Zr(tdao)4 (3), and Hf(tdao)4 (4) were prepared. We further synthesized heteroleptic compounds with different physical properties by introducing cyclopentadienyl (Cp) ligand, namely, CpZr(mdao)3 (5), CpHf(mdao)3 (6), CpZr(tdao)3 (7), and CpHf(tdao)3 (8). Thermogravimetric analysis was used for the assessment of the evaporation characteristics of complexes 1, 2, 5, and 6, and it revealed multistep weight losses with high residues. On the other hand, the thermogravimetric analysis curves of complexes 3, 4, 7, and 8 comprising tdao ligands revealed single-step weight losses with moderate residues. Single-crystal X-ray diffraction studies of complexes 1, 3, and 7 showed that all of the complexes have monomeric molecular structures. Complex 7 exhibited a low melting point (75 °C), good volatility, and high thermal stability compared with other complexes. Therefore, an atomic layer deposition process for the growth of ZrO2 was developed by using ZrCp(tdao)3 (7) as a novel precursor.

2.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931613

RESUMO

In the autonomous driving industry, there is a growing trend to employ long-wave infrared (LWIR)-based uncooled thermal-imaging cameras, capable of robustly collecting data even in extreme environments. Consequently, both industry and academia are actively researching contrast-enhancement techniques to improve the quality of LWIR-based thermal-imaging cameras. However, most research results only showcase experimental outcomes using mass-produced products that already incorporate contrast-enhancement techniques. Put differently, there is a lack of experimental data on contrast enhancement post-non-uniformity (NUC) and temperature compensation (TC) processes, which generate the images seen in the final products. To bridge this gap, we propose a histogram equalization (HE)-based contrast enhancement method that incorporates a region-based clipping technique. Furthermore, we present experimental results on the images obtained after applying NUC and TC processes. We simultaneously conducted visual and qualitative performance evaluations on images acquired after NUC and TC processes. In the visual evaluation, it was confirmed that the proposed method improves image clarity and contrast ratio compared to conventional HE-based methods, even in challenging driving scenarios such as tunnels. In the qualitative evaluation, the proposed method demonstrated upper-middle-class rankings in both image quality and processing speed metrics. Therefore, our proposed method proves to be effective for the essential contrast enhancement process in LWIR-based uncooled thermal-imaging cameras intended for autonomous driving platforms.

3.
J Am Chem Soc ; 145(3): 1638-1648, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633597

RESUMO

Excited-state aromatization dynamics in the photochemical ring opening of dihydroazulene (DHA) is investigated by nonadiabatic molecular dynamics simulations in connection with the mixed-reference spin-flip (MRSF)-TDDFT method. It is found that, in the main reaction channel, the ring opening occurs in the excited state in a sequence of steps with increasing aromaticity. The first stage lasting ca. 200 fs produces an 8π semiaromatic S1 minimum (S1, min) through an ultrafast damped bond length alternation (BLA) movement synchronized with a partial planarization of the cycloheptatriene ring. An additional ca. 200 fs are required to gain the vibrational energy needed to overcome a ring-opening transition state characterized by an enhanced Baird aromaticity. Unlike other BLA motions of ππ* state, it was shown that their damping is a characteristic feature of aromatic bond-equalization process. In addition, some minor channels of the reaction have also been discovered, where noticeably higher barriers of the S1 non/antiaromatic transition structures must be surmounted. These anti-Baird channels led to reformation of DHA or other closed-ring products. The observed competition between the Baird and anti-Baird channels suggests that the quantum yield of photochemical products can be controllable by tipping their balance. Hence, here we suggest including the concept of anti-Baird, which would expand the applicability of Baird rule to much broader situations.

4.
J Phys Chem A ; 127(49): 10382-10392, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38019644

RESUMO

The accurate description of solvent effects on X-ray absorption spectra (XAS) is fundamental for comparing the simulated spectra with experiments in solution. Currently, few protocols exist that can efficiently reproduce the effects of the solute/solvent interactions on XAS. Here, we develop an efficient and accurate theoretical protocol for simulating the solvent effects on XAS. The protocol combines electrostatic embedding QM/MM based on electrostatic potential fitted operators for describing the solute/solvent interactions and mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) for simulating accurate XAS spectra. To demonstrate the capabilities of our protocol, we compute the X-ray absorption of neutral proline in the gas phase and ionic proline in water in all relevant K-edges, showing excellent agreement with experiments. We show that states represented by core to π* transitions are almost unaffected by the interaction with water, whereas the core to σ* transitions are more impacted by the fluctuation of proline structure and the electrostatic interaction with the solvent. Finally, we reconstruct the pH-dependent XAS of proline in solution, determining that the N K-edge can be used to distinguish its three protonation states.

5.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37184015

RESUMO

Multiple ERI (Electron Repulsion Integral) tensor contractions (METC) with several matrices are ubiquitous in quantum chemistry. In response theories, the contraction operation, rather than ERI computations, can be the major bottleneck, as its computational demands are proportional to the multiplicatively combined contributions of the number of excited states and the kernel pre-factors. This paper presents several high-performance strategies for METC. Optimal approaches involve either the data layout reformations of interim density and Fock matrices, the introduction of intermediate ERI quartet buffer, and loop-reordering optimization for a higher cache hit rate. The combined strategies remarkably improve the performance of the MRSF (mixed reference spin flip)-TDDFT (time-dependent density functional theory) by nearly 300%. The results of this study are not limited to the MRSF-TDDFT method and can be applied to other METC scenarios.

6.
Angew Chem Int Ed Engl ; 62(20): e202302107, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36917205

RESUMO

Molecular emitters simultaneously generating light at different wavelengths have wide applications. With a small molecule, however, it is challenging to realize two independent radiative pathways. We invented the first examples of dual-emissive single-benzene fluorophores (SBFs). Two emissive tautomers are generated by synthetic modulation of the hydrogen bond acidity, which opens up pathways for excited-state proton transfer. White light is produced by a delicate balance between the energy and intensity of the emission from each tautomer. We show that the excited-state antiaromaticity of the benzene core itself dictates the proton movements driving the tautomer equilibrium. Using this simple benzene platform, a fluorinated SBF was synthesized with a record high solubility in perfluorocarbon solvents. White light-emitting devices and multicolor imaging of perfluorocarbon nanodroplets in live cells demonstrate the practical utility of these molecules.

7.
Phys Chem Chem Phys ; 23(14): 8368-8374, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876001

RESUMO

Oxidative-denitrogenation (ODN) of indole (IND) and methyl-substituted INDs (methyl-INDs), representative neutral nitrogen-containing compounds (NCCs), was carried out with TiO2@C and H2O2 as heterogeneous catalyst and oxidant, respectively, under ultrasound irradiation. The oxidation of INDs progressed through radical formation, as evidenced by electron spin resonance and radical scavenger experiments. The oxidized position of INDs in the ODN process was checked via characterization of the obtained products. It was observed that the oxidation finally occurred on the carbon rather than on the nitrogen atom of INDs, unlike the oxidation of basic NCCs (e.g., oxidation on the nitrogen atom, as respective N-oxides were formed) and sulfur-containing compounds. To understand the relative reactivity and oxidation position, electron density (ED) on the nitrogen atom of the studied INDs and relative stability of representative intermediates/products were calculated. It could be confirmed that ED on the nitrogen atom of the INDs is very important in the oxidation of INDs since the ODN reactivity of INDs was enhanced with increasing ED on the nitrogen atom of the investigated INDs. Moreover, theoretical analyses of the relative stability of substrate and intermediates/products (especially for IND) can explain the route for the observed final products in ODN. In other words, oxygen on the nitrogen atom, obtained via the first step of oxidation (electrophilic addition of an active oxygen atom on nitrogen), moves to the nearby carbon atom, because of the relative stability of the intermediates and products.

8.
J Phys Chem A ; 125(9): 1994-2006, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651623

RESUMO

A new adaptive algorithm for penalty function optimization for minimum-energy three-states conical intersections (ME3CI) is suggested. The new algorithm differs from the original penalty function algorithm by (a) removing the redundancy in the target function, (b) using an adaptive increment for the penalty function weighting factor, and (c) using tighter convergence criteria for the energy gap. The latter was introduced to guarantee convergence to a true conical intersection rather than to a narrowly avoided crossing geometry. The new algorithm was tested in the optimization of the ME3CI geometries in butadiene and malonaldehyde, where all of the previously found true ME3CI geometries were recovered. The previously found butadiene's CI3/2/1 turned out to be a narrowly avoided crossing. For butadiene, seven new ME3CI geometries have been located. Because of the removal of the redundancy and the use of the adaptive weighting factor, the convergence rate of the new algorithm is noticeably improved as compared to that of the previously proposed penalty function algorithm. The application to malonaldehyde and butadiene demonstrates that the three-state conical intersections may be more abundant and hence more involved in the photochemistry than previously thought. The recently developed mixed-reference spin flip (MRSF)-TDDFT method yields ME3CI geometries and relative energies quantitatively consistent with the previously reported calculations at a much reduced computational cost.

9.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924097

RESUMO

The non-adiabatic dynamics of furan excited in the ππ* state (S2 in the Franck-Condon geometry) was studied using non-adiabatic molecular dynamics simulations in connection with an ensemble density functional method. The time-resolved photoelectron spectra were theoretically simulated in a wide range of electron binding energies that covered the valence as well as the core electrons. The dynamics of the decay (rise) of the photoelectron signal were compared with the excited-state population dynamics. It was observed that the photoelectron signal decay parameters at certain electron binding energies displayed a good correlation with the events occurring during the excited-state dynamics. Thus, the time profile of the photoelectron intensity of the K-shell electrons of oxygen (decay constant of 34 ± 3 fs) showed a reasonable correlation with the time of passage through conical intersections with the ground state (47 ± 2 fs). The ground-state recovery constant of the photoelectron signal (121 ± 30 fs) was in good agreement with the theoretically obtained excited-state lifetime (93 ± 9 fs), as well as with the experimentally estimated recovery time constant (ca. 110 fs). Hence, it is proposed to complement the traditional TRPES observations with the trXPS (or trNEXAFS) measurements to obtain more reliable estimates of the most mechanistically important events during the excited-state dynamics.


Assuntos
Furanos/química , Espectroscopia Fotoeletrônica , Algoritmos , Teoria da Densidade Funcional , Modelos Moleculares , Modelos Teóricos , Conformação Molecular
10.
Phys Chem Chem Phys ; 22(13): 6953-6963, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182309

RESUMO

The one-dimensional projection (ODP) approach is extended to two-dimensional umbrella sampling (TDUS) and is applied to three different complex systems in combination with a reactive force field (ReaxFF). TDUS is capable of showing detailed features of the free-energy surface (FES) of the double-proton transfer of the acetic acid dimer. It also revealed the direct relationship between the types of hydrogen bonding and binding strengths in the case of adrenaline molecular recognition by SIVSF (Serine, Isoleucine, Valine, Cysteine, and Phenylalanine). The study of polymer aggregation using TDUS shows that aggregation is preferred with a less-polar solvent, which is also consistent with the experimental observation of a tape-casting process. Therefore, TDUS can be generally useful in FES explorations from simple chemical reactions to complex processes of molecular recognition and polymer aggregation.

11.
Phys Chem Chem Phys ; 22(3): 1115-1121, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31898709

RESUMO

Symmetry-breaking charge transfer (SBCT) is an important process at the early stages of the photoinduced processes in multichromophore systems such as the photosynthetic apparatus. We investigated the photoinduced SBCT dynamics of 9,9'-bianthracene (BA), a representative molecule showing SBCT, by time-resolved fluorescence (TF) with the highest time-resolution and excited-state quantum mechanics/effective fragment potential molecular dynamics (MD) simulation. TF experiments show that the SBCT kinetics matches quantitatively with the solvation function excluding the initial ultrafast component that is assigned to the inertial motion of the solvent. Therefore, it is established that the SBCT of BA is coupled solely with the rotational diffusion of solvent molecules excluding the inertial motion of solvents. MD simulations show that random rotational fluctuation of solvents mostly in the first solvation shell generates a transient electric field as high as 1.0 × 109 V m-1, which provides an asymmetric environment required for the generation of a CT state in this symmetric dimer. Once the CT state is formed, the dipole moment in the solute causes further rotation of solvent molecules leading to an augmented electric field, which in turn further stabilizes the CT state prohibiting the reverse reaction.


Assuntos
Antracenos/química , Processos Fotoquímicos , Solventes/química , Simulação de Dinâmica Molecular , Teoria Quântica , Eletricidade Estática
12.
Phys Chem Chem Phys ; 22(31): 17567-17573, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716454

RESUMO

Time-resolved photoelectron spectra during the photochemical ring-opening reaction of 1,3-cyclohexadiene (CHD) are modeled by an ensemble density functional theory (eDFT) method. The computational methodology employed in this work is capable of correctly describing the multi-reference effects arising in the ground and excited electronic states of molecules, which is important for the correct description of the ring-opening reaction of CHD. The geometries of molecular species along the non-adiabatic molecular dynamics (NAMD) trajectories reported in a previous study of the CHD photochemical ring-opening were used in this work to calculate the ionization energies and the respective Dyson orbitals for all possible ionization channels. The obtained theoretical time-resolved spectra display decay characteristics in a reasonable agreement with the experimental observations; i.e., the decay (and rise) of the most mechanistically significant signals occurs on the timescale of 100-150 fs. This is very different from the excited state population decay characteristics (τS1 = 234 ± 8 fs) obtained in the previous NAMD study. The difference between the population decay and the decay of the photoelectron signal intensity is traced back to the geometric transformation that the molecule undergoes during the photoreaction. This demonstrates the importance of including the geometric information in interpretation of the experimental observations.

13.
Phys Chem Chem Phys ; 22(29): 16532-16535, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32691035

RESUMO

Ice-core records show that anthropogenic pollution has increased the global atmospheric concentrations of hydrogen peroxide and iodine since the mid-20th century. Here, for the first time, we demonstrate a highly efficient mechanism that synergistically produces them in icy water conditions. This reaction is aided by a key intermediate IO2H, formed by an I- ion with a dissolved O2 in acidic icy water, which produces both I as well as O2H radicals. I recombines with I- to produce I2- at a diffusion-limited rate, followed by formation of I3- through disproportionation, while O2H yields H2O2 with I- and a proton dissolved in icy water.

14.
J Phys Chem A ; 124(38): 7795-7804, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32900199

RESUMO

The computation of electron attachment energies (electron affinities) was implemented in connection with an ensemble density functional theory method, the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS or SSR) method. With the use of the extended Koopmans' theorem, the electron affinities and the respective Dyson orbitals are obtained directly for the neutral molecule, thus avoiding the necessity to compute the ionized system. Together with the EKT-SSR (extended Koopmans' theorem-SSR) method for ionization potentials, which was developed earlier, EKT-SSR for electron affinities completes the implementation of the EKT-SSR formalism, which can now be used for obtaining electron detachment as well as the electron attachment energies of molecules in the ground and excited electronic states. The extended EKT-SSR method was tested in the calculation of several closed-shell molecules. For the molecules in the ground states, the EKT-SSR energies of Dyson's orbitals are virtually identical to the energies of the unoccupied orbitals in the usual single-reference spin-restricted Kohn-Sham calculations. For the molecules in the excited states, EKT-SSR predicts an increase of the most positive electron affinity by approximately the amount of the vertical excitation energy. The electron affinities of a number of diradicals were calculated with EKT-SSR and compared with the available experimental data. With the use of a standard density functional (BH&HLYP), the EKT-SSR electron affinities deviate on average by ca. 0.2 eV from the experimental data. It is expected that the agreement with the experiment can be improved by designing density functionals parametrized for ionization energies.

15.
J Phys Chem A ; 124(40): 8159-8172, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32902270

RESUMO

We used quantum chemistry methods at the levels of mixed-reference spin-flip time-dependent density functional theory and multireference perturbation theory to study diboron- and diaza-doped anthracenes and phenanthrenes. This class of structures recently surged as potential singlet fission chromophores. We studied electronic structures of their excited states and clarified the reasons why they satisfy or fail to satisfy the energy criteria for singlet fission chromophores. Many studied structures have their S1 states not dominated by HOMO → LUMO excitation, so they cannot be described using the conventional two site model. This is attributed to frontier orbital energy shifts induced by the doping and different charge-transfer energies in different one-electron singlet excitations or, in other words, different polarizations of hole and/or particle orbitals in their S1 and T1 states. There is a mirror relation between the orbital energy shifts induced by diboron- and diaza-dopings, which together with alternant hydrocarbon pairings of occupied and unoccupied orbitals, leads to more mirror relations between the excited states of the two types of doped structures.

16.
J Chem Phys ; 152(13): 134102, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268750

RESUMO

By applying a recently developed solution method for the Fredholm integral equation of the second kind, we obtain an expression for Green's function of the Smoluchowski equation with a reaction sink. The result is applied to obtain accurate analytical expressions for the time-dependent survival probability of a geminate reactant pair and the rate coefficient of the bulk recombination between reactants undergoing diffusive motions under strong Coulomb interactions. The effects of both repulsive and attractive interactions are considered, and the results are compared with the numerical results obtained by solving the equation for the survival probability and the nonequilibrium pair correlation function. It is shown that the solutions are accurate enough for most reasonable parameter values.

17.
Phys Chem Chem Phys ; 21(5): 2489-2498, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30656338

RESUMO

Photodecomposition of cyclopropanone is investigated by static quantum chemical calculations and non-adiabatic molecular dynamics (NAMD) simulations. The quantum chemical calculations are carried out by an ensemble density functional theory (eDFT) method capable of delivering high quality results for the ground and excited electronic states of molecules with dissociating bonds. In the NAMD simulations, this method is combined with a novel trajectory surface hopping (TSH) methodology derived from the exact factorization of the electronic-nuclear wavefunction. An ultrafast biexponential decay of the S1 state of cyclopropanone is predicted, where the short (ca. 30 fs) decay time is due to the trajectories reaching the conical intersection (CI) seam on the first approach and the long (ca. 120 fs) decay time is due to recrossing of the CI seam. The experimentally observed dependence of the dissociation (C3H4O* → C2H4 + CO) quantum yield on the excitation wavelength is correctly reproduced by the NAMD simulations. The dependence is explained by the necessity to excite certain vibrational normal modes (e.g., a ring stretching mode with the frequency of 769 cm-1) to break a lateral C-C bond remaining intact at the geometries of the CI seam.

18.
J Phys Chem A ; 123(39): 8385-8390, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31486645

RESUMO

With the help of quantum mechanical methods, the formation of H2SO4 by the oxidation of H2SO3 with H2O2 was studied theoretically. Both stepwise and concerted mechanisms were calculated. It was found that the direct oxidation of H2SO3 by H2O2 alone requires prohibitive activation energies of >38.6 kcal/mol. However, the addition of one water molecule exhibits a strong catalytic effect that dramatically reduces the overall reaction barrier to 6.2 (2.3 with PCM) kcal/mol. The deprotonated HSO3- species also reduces the overall reaction barrier to 5.6 (-5.8 with PCM) kcal/mol. Both of these proceed via concerted pathways. On the other hand, the stepwise mechanisms generally produce intermediates with a hydroperoxy group (-O-O-H), which is a result of a nucleophilic attack by the oxygens of H2O2. While studying the catalytic effect of water, a previously unknown hydroperoxy intermediate (HOO)S(OH)3, where sulfur is coordinated with three OH groups, was found. This work also reveals a rearrangement step of another hydroperoxy intermediate (HOO)SO2- to HSO4- that was found in earlier experimental studies. For all of the mechanisms calculated, the final H2SO4 is formed with a significant exothermicity of >60 kcal/mol. In general, even without sunlight, it was found that the formation of sulfuric acid by hydrogen peroxide can occur in a heterogeneous moisturized environment.

19.
J Phys Chem A ; 123(37): 7991-8000, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31436418

RESUMO

The mixed-reference spin-flip (MRSF) time-dependent density functional theory (TDDFT) method eliminates the notorious spin contamination of SF-TDDFT, thus enabling identification of states of proper spin-symmetry for automatic geometry optimization and molecular dynamics simulations. Here, we analyze and optimize the MRSF-TDDFT in the calculations of the vertical excitation energies (VEEs) and the singlet-triplet (ST) gaps. The dependence of the obtained VEEs and ST gaps on the intrinsic parameters of the MRSF-TDDFT method is investigated, and prescriptions for the proper use of the method are formulated. For VEEs, MRSF-TDDFT displays similar or better accuracy than SF-TDDFT (ca. 0.5 eV), while considerably outperforming the LR-TDDFT for the ST gaps. As a result, a new functional of STG1X (dubbed here), especially for ST gaps is suggested on the basis of splitting between the components of the atomic multiplets.

20.
J Phys Chem A ; 123(30): 6455-6462, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283235

RESUMO

The mixed-reference spin-flip time-dependent density functional theory (MRSF-TD-DFT) method eliminates the erroneous spin contamination of the SF-TD-DFT methodology, while retaining the conceptual and practical simplicity of the latter. The availability of the analytic gradient of the energy of the MRSF-TD-DFT response states enables automatic geometry optimization of the targeted states. Here, we apply the new method to optimize the geometry of several S1/S0 conical intersections occurring in typical organic molecules. We demonstrate that MRSF-TD-DFT is capable of producing the correct double-cone topology of the intersections and describing the geometry of the lowest-energy conical intersections and their relative energies with accuracy matching that of the best multireference wavefunction ab initio methods. In this regard, MRSF-TD-DFT differs from many popular single-reference methods, such as, e.g., the linear response TD-DFT method, which fail to produce the correct topology of the intersections. As the new methodology completely eliminates the ambiguity with the identification of the response states as proper singlets or triplets, which is plaguing the SF-TD-DFT calculations, it can be used for automatic geometry optimization and molecular dynamic simulations not requiring constant human intervention.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa