Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 134: 109-117, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890255

RESUMO

We previously reported a novel danshensu derivative (R)-(3,5,6-Trimethylpyrazinyl) methyl-2-acetoxy-3-(3,4-diacetoxyphenyl) propanoate (ADTM) that exhibited promising cardiovascular protective activities, such as antioxidant and antiplatelet activities, as well as arterial relaxation. Particularly, ADTM treatment for 24 h exhibited anti-oxidative activity and effectively protected against acute myocardial infarction (MI) in a rat model. Here, we further investigated the pharmacological actions of 14 days of treatment with ADTM in alleviating and restoring the MI size by stimulating revascularization. The pro-angiogenesis activity of ADTM has been validated in multiple experimental models including MI mouse, zebrafish, human umbilical vein endothelial cells (HUVECs) and A7r5 vascular smooth muscle cells (VSMCs). In addition, the effect of ADTM on L-type Ca2+ current (ICaL) was determined. We demonstrated that ADTM (12-24 mg/kg) treatment for 14 days significantly decreased myocardial infarct size, increased the blood vessel density compared to vehicle in the myocardial peri-infarct area, and ADTM (24 mg/kg) enhanced the serum VEGF level in MI mice (P < 0.05). We also demonstrated that treatment with ADTM at 50-200 µM rescued chemical-induced blood vessel loss in zebrafish. Although ADTM did not directly promote the features of angiogenesis in HUVECs, ADTM significantly increased VEGF production in a dose-dependent manner in A7r5 cells (P < 0.05). A patch clamp experiment demonstrated that ADTM (200 µM) inhibited ICaL at all depolarizing voltages, with > 50% inhibition at + 10 mV. Taken together, our results indicated that ADTM served as a Ca2+ current blocker, promoted angiogenesis and reduced experimental myocardial infarct size in mice, probably through stimulation of VEGF production in VSMCs.


Assuntos
Indutores da Angiogênese/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fenilpropionatos/farmacologia , Pirazinas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Fator A de Crescimento do Endotélio Vascular/sangue , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Int J Cardiol ; 168(2): 1349-59, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23290949

RESUMO

BACKGROUND: Danshensu (3-(3,4-dihydroxyphenyl) lactic acid, DSS) is one of the most promising cardioprotective components in the root of Salvia miltiorrhiza but its poor chemical stability poses hurdles in its therapeutic development. It is therefore desirable to enhance the stability of DSS by chemical modification to improve its activities. In the present study, a novel DSS derivative named ADTM was synthesized and characterized for its cardioprotective properties. METHODS: Oxidative stress was induced in H9c2 cardiomyoblast cells by tert-butylhydroperoxide (t-BHP) and the protective effects of ADTM were evaluated. For in vivo study, adult rats were treated with vehicle, DSS, ADTM or amlodipine (n=6-8/group) for 24h before the induction of acute myocardial ischemia. At the end of each experiment, infarct size was measured. Underlying the mechanisms of the cardioprotective effects of ADTM were further investigated in H9c2 cells and rat myocardium by evaluating the effects of Nrf2 (NF-E2-related factor 2) and Akt/PI3K pathways. RESULTS: ADTM was approximately 10 times more effective than DSS against t-BHP-induced cell injury in H9c2 cells. In rat myocardial ischemia model, ADTM treatment significantly alleviated myocardial infarction. Akt/PI3K and Nrf2 pathways were demonstrated to be involved in both in vitro and in vivo experiments. CONCLUSIONS: These results demonstrated that ADTM displayed much better cardioprotective effects than its parent compounds both in vitro and in vivo. This cardioprotection is mediated, at least in part, through Akt/PI3K and Nrf2 pathways. This novel compound represents a promising candidate for the treatment of cardiovascular diseases (CVDs), particularly myocardial infarction.


Assuntos
Cardiotônicos/farmacologia , Lactatos/farmacologia , Fator 2 Relacionado a NF-E2/fisiologia , Proteína Oncogênica v-akt/fisiologia , Fosfatidilinositol 3-Quinase/fisiologia , Transdução de Sinais/fisiologia , Animais , Cardiotônicos/química , Linhagem Celular , Lactatos/química , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa