Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008658

RESUMO

Deep learning (DL) is becoming more popular as a useful tool in various scientific domains, especially in chemistry applications. In the infrared spectroscopy field, where identifying functional groups in unknown compounds poses a significant challenge, there is a growing need for innovative approaches to streamline and enhance analysis processes. This study introduces a transformative approach leveraging a DL methodology based on transformer attention models. With a data set containing approximately 8677 spectra, our model utilizes self-attention mechanisms to capture complex spectral features and precisely predict 17 functional groups, outperforming conventional architectures in both functional group prediction accuracy and compound-level precision. The success of our approach underscores the potential of transformer-based methodologies in enhancing spectral analysis techniques.

2.
Sensors (Basel) ; 22(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632172

RESUMO

In this study, we report an advanced fabrication technique to develop a miniature focused needle transducer. Two different types of high-frequency (100 MHz) transducers were fabricated using the lead magnesium niobate-lead titanate (PMN-0.3PT) and lithium niobate (LiNbO3) single crystals. In order to enhance the transducer's performance, a unique mass-spring matching layer technique was adopted, in which gold and parylene play the roles of the mass layer and spring layer, respectively. The PMN-0.3PT transducer had a 103 MHz center frequency with a -6 dB bandwidth of 52%, and a signal-to-noise ratio (SNR) of 42 dB. The center frequency, -6 dB bandwidth, and SNR of the LiNbO3 transducer were 105 MHz, 66%, and 44 dB, respectively. In order to compare and evaluate the transducers' performances, an ultrasonic biomicroscopy (UBM) imaging on the fish eye was performed. The results showed that the LiNbO3 transducer had a better contrast resolution compared to the PMN-0.3PT transducer. The fabricated transducer showed an excellent performance with high-resolution corneal epithelium imaging of the experimental fish eye. These interesting findings are useful for the future biomedical implementation of the fabricated transducers in the field of high-resolution ultrasound imaging and diagnosis purpose.


Assuntos
Agulhas , Transdutores , Animais , Desenho de Equipamento , Radiografia , Ultrassonografia/métodos
3.
Sensors (Basel) ; 19(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717095

RESUMO

The present study illustrates the design, fabrication, and evaluation of a novel multifocal point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound application. The fabricated MFP surface was press-focused using a computer numerical control (CNC) machining tool-customized multi-spherical pattern object. The multi-spherical pattern has five spherical surfaces with equal area and connected continuously to have the same energy level at focal points. Center points of these spheres are distributed in a linear pattern with 1 mm distance between each two points. The radius of these spheres increases steadily from 10 mm to 13.86 mm. The designed MFP transducer had a center frequency of 50 MHz and a -6 dB bandwidth of 68%. The wire phantom test was conducted to study and demonstrate the advantages of this novel design. The obtained results for MFP transducer revealed a significant increase (4.3 mm) of total focal zone in the near-field and far-field area compared with 0.48 mm obtained using the conventional single focal point transducer. Hence, the proposed method is promising to fabricate MFP transducers for deeper imaging depth applications.

4.
Acta Biomater ; 182: 213-227, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734286

RESUMO

The strategic integration of multi-functionalities within a singular nanoplatform has received growing attention for enhancing treatment efficacy, particularly in chemo-photothermal therapy. This study introduces a comprehensive concept of Janus nanoparticles (JNPs) composed of Au and Fe3O4 nanostructures intricately bonded with ß-cyclodextrins (ß-CD) to encapsulate 5-Fluorouracil (5-FU) and Ibuprofen (IBU). This strategic structure is engineered to exploit the synergistic effects of chemo-photothermal therapy, underscored by their exceptional biocompatibility and photothermal conversion efficiency (∼32.88 %). Furthermore, these ß-CD-conjugated JNPs enhance photodynamic therapy by generating singlet oxygen (1O2) species, offering a multi-modality approach to cancer eradication. Computer simulation results were in good agreement with in vitro and in vivo assays. Through these studies, we were able to prove the improved tumor ablation ability of the drug-loaded ß-CD-conjugated JNPs, without inducing adverse effects in tumor-bearing nude mice. The findings underscore a formidable tumor ablation potency of ß-CD-conjugated Au-Fe3O4 JNPs, heralding a new era in achieving nuanced, highly effective, and side-effect-free cancer treatment modalities. STATEMENT OF SIGNIFICANCE: The emergence of multifunctional nanoparticles marks a pivotal stride in cancer therapy research. This investigation unveils Janus nanoparticles (JNPs) amalgamating gold (Au), iron oxide (Fe3O4), and ß-cyclodextrins (ß-CD), encapsulating 5-Fluorouracil (5-FU) and Ibuprofen (IBU) for synergistic chemo-photothermal therapy. Demonstrating both biocompatibility and potent photothermal properties (∼32.88 %), these JNPs present a promising avenue for cancer treatment. Noteworthy is their heightened photodynamic efficiency and remarkable tumor ablation capabilities observed in vitro and in vivo, devoid of adverse effects. Furthermore, computational simulations validate their interactions with cancer cells, bolstering their utility as an emerging therapeutic modality. This endeavor pioneers a secure and efficacious strategy for cancer therapy, underscoring the significance of ß-CD-conjugated Au-Fe3O4 JNPs as innovative nanoplatforms with profound implications for the advancement of cancer therapy.


Assuntos
Ouro , Camundongos Nus , beta-Ciclodextrinas , Animais , Ouro/química , Ouro/farmacologia , beta-Ciclodextrinas/química , Humanos , Camundongos , Fluoruracila/farmacologia , Fluoruracila/química , Ibuprofeno/farmacologia , Ibuprofeno/química , Terapia Fototérmica , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Camundongos Endogâmicos BALB C , Compostos Férricos/química , Compostos Férricos/farmacologia
5.
J Photochem Photobiol B ; 258: 112990, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032372

RESUMO

Photobiomodulation (PBM) has widely been used to effectively treat complications associated with cancer treatment, including oral mucositis, radiation dermatitis, and surgical wounds. However, the safety of PBM against cancer still needs to be validated as the effects of PBM on cancer cells and their mechanisms are unclear. The current study investigated the wavelength-dependent PBM effects by examining four different laser wavelengths (405, 532, 635, and 808 nm) on B16F10 melanoma tumor cells. In vitro tests showed that PBM with 808 nm promoted both proliferation and migration of B16F10 cells. In vivo results demonstrated that PBM with 808 nm significantly increased the relative tumor volume and promoted angiogenesis with overexpression of VEGF and HIF-1α. In addition, PBM induced the phosphorylation of factors closely related to cancer cell proliferation and tumor growth and upregulated the related gene expression. The current result showed that compared to the other wavelengths, 808 nm yielded a significant tumor-stimulating effect the malignant melanoma cancer. Further studies will investigate the in-depth molecular mechanism of PBM on tumor stimulation in order to warrant the safety of PBM for clinical cancer treatment.


Assuntos
Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia , Terapia com Luz de Baixa Intensidade , Melanoma Experimental , Neovascularização Patológica , Neoplasias Cutâneas , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Angiogênese/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Terapia com Luz de Baixa Intensidade/métodos , Melanoma Experimental/radioterapia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Neovascularização Patológica/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/radioterapia
6.
Adv Colloid Interface Sci ; 332: 103263, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39121830

RESUMO

The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.

7.
Adv Colloid Interface Sci ; 321: 103013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839281

RESUMO

Hydroxyapatite (HAp), a well-known biomaterial, has witnessed a remarkable evolution over the years, transforming from a simple biocompatible substance to an advanced functional material with a wide range of applications. This abstract provides an overview of the significant advancements in the field of HAp and its journey towards becoming a multifunctional material. Initially recognized for its exceptional biocompatibility and bioactivity, HAp gained prominence in the field of bone tissue engineering and dental applications. Its ability to integrate with surrounding tissues, promote cellular adhesion, and facilitate osseointegration made it an ideal candidate for various biomedical implants and coatings. As the understanding of HAp grew, researchers explored its potential beyond traditional biomaterial applications. With advances in material synthesis and engineering, HAp began to exhibit unique properties that extended its utility to other disciplines. Researchers successfully tailored the composition, morphology, and surface characteristics of HAp, leading to enhanced mechanical strength, controlled drug release capabilities, and improved biodegradability. These modifications enabled the utilization of HAp in drug delivery systems, biosensors, tissue engineering scaffolds, and regenerative medicine applications. Moreover, the exceptional biomineralization properties of HAp allowed for the incorporation of functional ions and molecules during synthesis, leading to the development of bioactive coatings and composites with specific therapeutic functionalities. These functionalized HAp materials have demonstrated promising results in antimicrobial coatings, controlled release systems for growth factors and therapeutic agents, and even as catalysts in chemical reactions. In recent years, HAp nanoparticles and nanostructured materials have emerged as a focal point of research due to their unique physicochemical properties and potential for targeted drug delivery, imaging, and theranostic applications. The ability to manipulate the size, shape, and surface chemistry of HAp at the nanoscale has paved the way for innovative approaches in personalized medicine and regenerative therapies. This abstract highlights the exceptional evolution of HAp, from a traditional biomaterial to an advanced functional material. The exploration of novel synthesis methods, surface modifications, and nanoengineering techniques has expanded the horizon of HAp applications, enabling its integration into diverse fields ranging from biomedicine to catalysis. Additionally, this manuscript discusses the emerging prospects of HAp-based materials in photocatalysis, sensing, and energy storage, showcasing its potential as an advanced functional material beyond the realm of biomedical applications. As research in this field progresses, the future holds tremendous potential for HAp-based materials to revolutionize medical treatments and contribute to the advancement of science and technology.


Assuntos
Nanopartículas , Nanoestruturas , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Durapatita/química , Nanopartículas/química , Osso e Ossos
8.
Artigo em Inglês | MEDLINE | ID: mdl-37021858

RESUMO

Computer-aided diagnosis using dermoscopy images is a promising technique for improving the efficiency of facial skin disorder diagnosis and treatment. Hence, in this study, we propose a low-level laser therapy (LLLT) system with a deep neural network and medical internet of things (MIoT) assistance. The main contributions of this study are to (1) provide a comprehensive hardware and software design for an automatic phototherapy system, (2) propose a modified-U2Net deep learning model for facial dermatological disorder segmentation, and (3) develop a synthetic data generation process for the proposed models to address the issue of the limited and imbalanced dataset. Finally, a MIoT-assisted LLLT platform for remote healthcare monitoring and management is proposed. The trained U2-Net model achieved a better performance on untrained dataset than other recent models, with an average Accuracy of 97.5%, Jaccard index of 74.7%, and Dice coefficient of 80.6%. The experimental results demonstrated that our proposed LLLT system can accurately segment facial skin diseases and automatically apply for phototherapy. The integration of artificial intelligence and MIoT-based healthcare platforms is a significant step toward the development of medical assistant tools in the near future.

9.
ACS Biomater Sci Eng ; 9(8): 4607-4618, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452737

RESUMO

Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.


Assuntos
Nanopartículas Metálicas , Itérbio/química , Gadolínio/química , Durapatita/química , Meios de Contraste/química , Nanopartículas Metálicas/química , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia
10.
Front Mol Biosci ; 9: 1085458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504716

RESUMO

The efficiency of a cancer therapy agent depends on its ability to eliminate tumors without endangering neighboring healthy tissues. In this present study, a novel multifunctional property enriched nanostructured system was synthesized on manganese-doped hydroxyapatite (Mn-HAp) conjugated with counter folic acid (FA) IR-783 fluorescence dye. The tailored synthesis of nano rod-shaped Mn-HAp nanoparticles with high surface area allows to conjugate FA/IR-783 dye which enhanced retention time during in vivo circulation. The drug-free Photothermal Photodynamic therapy mediated cancer treatment permits the prevention of collateral damages to non-cancerous cells. The safe HAp biomaterial matrix allows a large number of molecules on its surface due to its active different charge moieties (Ca2+/PO4 3-) without any recurrence toxicity. The doped Mn allows releasing of Mn2+ ions which triggered the production of toxic hydroxyl radicals (•OH) via Fenton or Fenton-like reactions to decompose H2O2 in the tumor sites. Herein, IR-783 and FA were selected for targeted fluorescence imaging-guided photothermal therapy. 6The PTT performance of synthesized nanostructured system shows enhanced potential with ∼60°C temperature elevation with 0.75 W∙cm-2 power irradiated within 7 min of treatment. PDT activity was also observed initially with Methylene Blue (MB) as a targeted material which shows a drastic degradation of MB and further in vitro studies with MDA-MB-231 breast cancer cell line show cytotoxicity due to the generated reactive oxygen species (ROS) effect. FA/IR-783 conjugated Mn-HAp nanoparticles (2.0 mol% Mn-HAp/FA-IR-783) show significant tumor-specific targeting and treatment efficiency while intravenously injected in (tail vain) BALB/c nude mice model without any recurrence. The synthesized nanostructured system had ample scope to be a promising Photo-Therapeutic agent for cancer treatment.

11.
Biosensors (Basel) ; 12(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35323409

RESUMO

Monitoring the vital signs and physiological responses of the human body in daily activities is particularly useful for the early diagnosis and prevention of cardiovascular diseases. Here, we proposed a wireless and flexible biosensor patch for continuous and longitudinal monitoring of different physiological signals, including body temperature, blood pressure (BP), and electrocardiography. Moreover, these modalities for tracking body movement and GPS locations for emergency rescue have been included in biosensor devices. We optimized the flexible patch design with high mechanical stretchability and compatibility that can provide reliable and long-term attachment to the curved skin surface. Regarding smart healthcare applications, this research presents an Internet of Things-connected healthcare platform consisting of a smartphone application, website service, database server, and mobile gateway. The IoT platform has the potential to reduce the demand for medical resources and enhance the quality of healthcare services. To further address the advances in non-invasive continuous BP monitoring, an optimized deep learning architecture with one-channel electrocardiogram signals is introduced. The performance of the BP estimation model was verified using an independent dataset; this experimental result satisfied the Association for the Advancement of Medical Instrumentation, and the British Hypertension Society standards for BP monitoring devices. The experimental results demonstrated the practical application of the wireless and flexible biosensor patch for continuous physiological signal monitoring with Internet of Medical Things-connected healthcare applications.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Pressão Sanguínea , Humanos , Internet , Monitorização Fisiológica
12.
Comput Biol Med ; 141: 104960, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34776096

RESUMO

Photothermal therapy (PTT) requires tight thermal dose control to achieve tumor ablation with minimal thermal injury on surrounding healthy tissues. In this study, we proposed a real-time closed-loop system for monitoring and controlling the temperature of PTT using a non-contact infrared thermal sensor array and an artificial neural network (ANN) to induce a predetermined area of thermal damage on the tissue. A cost-effective infrared thermal sensor array was used to monitor the temperature development for feedback control during the treatment. The measured and predicted temperatures were used as inputs of fuzzy control logic controllers that were implemented on an embedded platform (Jetson Nano) for real-time thermal control. Three treatment groups (continuous wave = CW, conventional fuzzy logic = C-Fuzzy, and ANN-based predictive fuzzy logic = P-Fuzzy) were examined and compared to investigate the laser heating performance and collect temperature data for ANN model training. The ex vivo experiments validated the efficiency of fuzzy control with temperature method on maintaining the constant interstitial tissue temperature (80 ± 1.4 °C) at a targeted surface of the tissue. The linear relationship between coagulation areas and the treatment time was indicated in this study, with the averaged coagulation rate of 0.0196 cm2/s. A thermal damage area of 1.32 cm2 (diameter ∼1.3 cm) was observed under P-Fuzzy condition for 200 s, which covered the predetermined thermal damage area (diameter ∼1 cm). The integration of real-time feedback temperature control with predictive ANN could be a feasible approach to precisely induce the preset extent of thermal coagulation for treating papillary thyroid microcarcinoma.


Assuntos
Redes Neurais de Computação , Terapia Fototérmica , Análise Custo-Benefício , Lógica Fuzzy , Temperatura
13.
Colloids Surf B Biointerfaces ; 218: 112722, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35917691

RESUMO

Injectability and self-setting properties are important factors to increase the efficiency of bone regeneration and reconstruction, thereby reducing the invasiveness of hard tissue engineering procedures. In this study, 63S bioactive glass (BG), nano-hydroxyapatite (n-HAp), alumina, titanium dioxide, and methylene bis-acrylamide (MBAM)-mediated polymeric crosslinking composites were prepared for the formulation of an efficient self-setting bone cement. According to the cytocompatibility and physicochemical analyses, all the samples qualified the standard of the bio-composite materials. They revealed high thermal stability, injectability, and self-setting ability supported by ~ 10.73% (maximum) mass loss, ~ 92-93% injectability and 24 ± 5 min of initial setting time. Moreover, a cellular adhesion and proliferation study was additionally performed with osteoblasts like MG-63 cells, which facilitate pseudopod-like cellular extensions on the BG/n-HAp composite scaffold surface. The SAM study was employed to non-invasively assess the self-setting properties of the composite bio-cement using the post injected distribution and physical properties of the phantom. These results validate the significant potential characteristics of the BG/n-HAp self-setting bio-cement (16:4:2:1) for promising minimal-invasive bone tissue engineering applications.


Assuntos
Cimentos Ósseos , Engenharia Tecidual , Acústica , Acrilamidas , Óxido de Alumínio , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/química , Materiais Dentários , Durapatita/química , Teste de Materiais/métodos , Engenharia Tecidual/métodos
14.
Photoacoustics ; 25: 100310, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34824975

RESUMO

Photoacoustic (PA) microscopy allows imaging of the soft biological tissue based on optical absorption contrast and spatial ultrasound resolution. One of the major applications of PA imaging is its characterization of microvasculature. However, the strong PA signal from skin layer overshadowed the subcutaneous blood vessels leading to indirectly reconstruct the PA images in human study. Addressing the present situation, we examined a deep learning (DL) automatic algorithm to achieve high-resolution and high-contrast segmentation for widening PA imaging applications. In this research, we propose a DL model based on modified U-Net for extracting the relationship features between amplitudes of the generated PA signal from skin and underlying vessels. This study illustrates the broader potential of hybrid complex network as an automatic segmentation tool for the in vivo PA imaging. With DL-infused solution, our result outperforms the previous studies with achieved real-time semantic segmentation on large-size high-resolution PA images.

15.
J Adv Res ; 41: 23-38, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328751

RESUMO

INTRODUCTION: The advanced features of plasmonic nanomaterials enable initial high accuracy detection with different therapeutic intervention. Computational simulations could estimate the plasmonic heat generation with a high accuracy and could be reliably compared to experimental results. This proposed combined theoretical-experimental strategy may help researchers to better understand other nanoparticles in terms of plasmonic efficiency and usability for future nano-theranostic research. OBJECTIVES: To develop innovative computationally-driven approach to quantify any plasmonic nanoparticles photothermal efficiency and effects before their use as therapeutic agents. METHODS: This report introduces drug free plasmonic silver triangular nanoprisms coated with polyvinyl alcohol biopolymer (PVA-SNT), for in vivo photoacoustic imaging (PAI) guided photothermal treatment (PTT) of triple-negative breast cancer mouse models. The synthesized PVA-SNT nanoparticles were characterized and a computational electrodynamic analysis was performed to evaluate and predict the optical and plasmonic photothermal properties. The in vitro biocompatibility and in vivo tumor abalation study was performed with MDA-MB-231 human breast cancer cell line and in nude mice model. RESULTS: The drug free 140 µg∙mL-1 PVA-SNT nanoparticles with 1.0 W∙cm-2 laser irradiation for 7 min proved to be an effective and optimized theranostic approach in terms of PAI guided triple negative breast cancer treatment. The PVA-SNT nanoparticles exhibits excellent biosafety, photostability, and strong efficiency as PAI contrast agent to visualize tumors. Histological analysis and fluorescence-assisted cell shorter assay results post-treatment apoptotic cells, more importantly, it shows substantial damage to in vivo tumor tissues, killing almost all affected cells, with no recurrence. CONCLUSION: This is a first complete study on computational simulations to estimate the plasmonic heat generation followed by drug free plasmonic PAI guided PTT for cancer treatment. This computationally-driven theranostic approach demonstrates an innovative thought regarding the nanoparticles shape, size, concentration, and composition which could be useful for the prediction of photothermal heat generation in precise nanomedicine applications.


Assuntos
Hipertermia Induzida , Neoplasias , Técnicas Fotoacústicas , Animais , Humanos , Camundongos , Nanomedicina Teranóstica/métodos , Fototerapia/métodos , Prata/uso terapêutico , Técnicas Fotoacústicas/métodos , Terapia Fototérmica , Hipertermia Induzida/métodos , Camundongos Nus , Neoplasias/tratamento farmacológico
16.
Colloids Surf B Biointerfaces ; 214: 112458, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35306345

RESUMO

Multifunctional nanomaterials developed from hydroxyapatite (HAp) with enhanced biological characteristics have recently attracted attention in the biomedical field. The goal of this study is to investigate the potential applications of cobalt-doped HAp (Co-HAp) in the biomedical imaging and therapeutic applications. The co-precipitation approach was used to substitute different molar concentrations of Ca2+ ions with cobalt (Co2+) in HAp structure. The synthesized Co-HAp nanoparticles were studied using various sophisticated techniques to verify the success rate of the doping method. The specific crystal structure, functional groups, size, morphology, photoluminescence property, and thermal stability of the Co-HAp nanoparticles were analyzed based on the characterization results. The computational modelling of doped and undoped HAp reveals the difference in crystal structure parameters. The cytotoxicity study (MTT assay and AO/PI/Hoechst fluorescence staining) reveals the non-toxic characteristics of Co-HAp nanoparticles on MDA-MB-231 breast cancer cell lines. The DOX was loaded onto Co-HAp, showing the maximum drug loading capacity for 2.0 mol% Co-HAp. Drug release was estimated in five different pH environments with various time intervals over 72 h. Furthermore, 2.0 mol% Co-HAp shows excellent fluorescence sensitivity with FITC-conjugated MDA-MB-231 cell lines. These results suggest that cobalt improved the fluorescence intensity of FITC-labeled HAp nanoparticles. This work highlights the promising application of Co-HAp nanoparticles with significant enhanced fluorescence activity for imaging-guided drug delivery system.


Assuntos
Durapatita , Nanoestruturas , Cobalto , Sistemas de Liberação de Medicamentos , Durapatita/química , Fluoresceína-5-Isotiocianato , Fluorescência
17.
Int J Biol Macromol ; 183: 55-67, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33857520

RESUMO

In recent years, suitable bioactive materials coated nanoparticles have attracted substantial attention in the field of biomedical applications. The present study emphasizes experimental details for the synthesis of boiling rice starch extract (BRE) coated iron oxide nanoparticles (IONPs) to treat cancer by photoacoustic imaging (PAI)-guided chemo-photothermal therapy. The solvothermal method was used to synthesize IONPs. The physical immobilization method helps to coat BRE-loaded doxorubicin (DOX) molecules on the iron oxide surface. In vitro drug release was estimated in basic (pH 9.0), neutral (pH 7.2), and acidic (pH 4.5) media for varying time periods using ultraviolet-visible spectroscopy. The chemical and physical properties of the synthesized spherical BRE-IONPs were characterized using sophisticated analytical instrumentation. A magnetic saturation experiment was performed with BRE-IONPs for evaluating possible hyperthermia in targeted drug delivery. The biological activity of the synthesized BRE-IONPs was investigated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and acridine orange/propidium iodide fluorescence cell viability study. BRE-IONPs showed excellent photothermal stability, with a high photothermal conversion efficiency (η = 29.73%), biocompatible property, and high near-infrared region absorption for PAI-guided PTT treatment. This study will provide a better understanding of rice starch as a suitable bioactive coating material for possible theranostic applications.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias Ósseas/terapia , Doxorrubicina/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Oryza , Osteossarcoma/terapia , Técnicas Fotoacústicas , Terapia Fototérmica , Amido/farmacologia , Nanomedicina Teranóstica , Antibióticos Antineoplásicos/química , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Preparações de Ação Retardada , Doxorrubicina/química , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Oryza/química , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/metabolismo , Amido/isolamento & purificação
18.
Comput Biol Med ; 136: 104610, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34274598

RESUMO

In low-level laser therapy, providing an optimal dosage and proposing a proper diagnosis before dermatological treatment are essential to reduce the side effects and potential dangers. In this article, a smart LED therapy system for automatic facial acne vulgaris diagnosis based on deep learning and Internet of Things application is proposed. The main goals of this study were to (1) develop an LED therapy device with different power densities and LED grid control; (2) propose a deep learning model based on modified ResNet50 and YOLOv2 for an automatic acne diagnosis; and (3) develop a smartphone application for facial photography image capture and LED therapy parameter configuration. Furthermore, a healthcare Internet of Things (H-IoT) platform for the connectivity between smartphone apps, the cloud server, and the LED therapy device is proposed to improve the efficiency of the treatment process. Experiments were conducted on test data sets divided by a cross-validation method to verify the feasibility of the proposed LED therapy system with automatic facial acne detection. The obtained results evidenced the practical application of the proposed LED therapy system for automatic acne diagnosis and H-IoT-based solutions.


Assuntos
Acne Vulgar , Aprendizado Profundo , Internet das Coisas , Acne Vulgar/terapia , Humanos , Projetos de Pesquisa
19.
Physiol Meas ; 41(12): 125011, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32674080

RESUMO

OBJECTIVE: The aim of this study was to monitor the physiological changes and cytotoxic effects of exogenous contrast agents during photoacoustic imaging (PAI) and photothermal therapy (PTT). In this paper, a low-power telemetric device for mouse vital signs monitoring was designed and demonstrated. APPROACH: The power consumption was optimized through hardware and software co-design with a 17% increased operating time compared with typical operation. To demonstrate the feasibility of the monitoring device, PAI and PTT experiments with chitosan-polypyrrole nanocomposites (CS-PPy NCs) as exogenous contrast agents were conducted. Herein, the physiological variation in groups of mice with different CS-PPy NC concentrations was observed and analyzed. MAIN RESULTS: The experimental results indicated the influence of CS-PPy NCs and anesthesia on mouse vital signs in PAI and PTT. Additionally, the association between core temperature, heart rate, and saturation of peripheral oxygen (SpO2) during PAI and PTT was shown. The strong near-infrared absorbance of exogenous contrast agents could account for the increase in mouse core temperature and tumor temperature in this study. Furthermore, high cross-correlation values between core temperature, heart rate, and SpO2 were demonstrated to explain the fluctuation of mouse vital signs during PAI and PTT. SIGNIFICANCE: A design of a vital signs monitoring device, with low power consumption, was introduced in this study. A high cross correlation coefficient of mouse vital signs and the effects of CS-PPy NCs were observed, which explained the mouse physiological variation during the PAI and PTT experiments.


Assuntos
Técnicas Fotoacústicas , Terapia Fototérmica , Telemetria/instrumentação , Sinais Vitais , Animais , Camundongos , Polímeros , Pirróis
20.
Photoacoustics ; 23: 100274, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34150499

RESUMO

Photoacoustic microscopy (PAM) is an important imaging tool that can noninvasively visualize the anatomical structure of living animals. However, the limited scanning area restricts traditional PAM systems for scanning a large animal. Here, we firstly report a dual-channel PAM system based on a custom-made slider-crank scanner. This novel scanner allows us to stably capture an ultra-widefield scanning area of 24 mm at a high B-scan speed of 32 Hz while maintaining a high signal-to-noise ratio. Our system's spatial resolution is measured at ∼3.4 µm and ∼37 µm for lateral and axial resolution, respectively. Without any contrast agent, a dragonfly wing, a nude mouse ear, an entire rat ear, and a portion of mouse sagittal are successfully imaged. Furthermore, for hemodynamic monitoring, the mimicking circulating tumor cells using magnetic contrast agent is rapidly captured in vitro. The experimental results demonstrated that our device is a promising tool for biological applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa