Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2193866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37013838

RESUMO

Inositol polyphosphates (IPs) are a group of inositol metabolites that act as secondary messengers for external signalling cues. They play various physiological roles such as insulin release, telomere length maintenance, cell metabolism, and aging. Inositol hexakisphosphate kinase 2 (IP6K2) is a key enzyme that produces 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-IP7), which influences the early stages of glucose-induced exocytosis. Therefore, regulation of IP6Ks may serve as a promising strategy for treating diseases such as diabetes and obesity. In this study, we designed, synthesised, and evaluated flavonoid-based compounds as new inhibitors of IP6K2. Structure-activity relationship studies identified compound 20s as the most potent IP6K2 inhibitor with an IC50 value of 0.55 µM, making it 5-fold more potent than quercetin, the reported flavonoid-based IP6K2 inhibitor. Compound 20s showed higher inhibitory potency against IP6K2 than IP6K1 and IP6K3. Compound 20s can be utilised as a hit compound for further structural modifications of IP6K2 inhibitors.


Assuntos
Inibidores Enzimáticos , Flavonoides , Insulina , Fosfotransferases (Aceptor do Grupo Fosfato) , Flavonoides/farmacologia , Inositol , Transdução de Sinais , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia
2.
Mol Syst Biol ; 13(4): 927, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455349

RESUMO

The intestinal epithelium is the fastest regenerative tissue in the body, fueled by fast-cycling stem cells. The number and identity of these dividing and migrating stem cells are maintained by a mosaic pattern at the base of the crypt. How the underlying regulatory scheme manages this dynamic stem cell niche is not entirely clear. We stimulated intestinal organoids with Notch ligands and inhibitors and discovered that intestinal stem cells employ a positive feedback mechanism via direct Notch binding to the second intron of the Notch1 gene. Inactivation of the positive feedback by CRISPR/Cas9 mutation of the binding sequence alters the mosaic stem cell niche pattern and hinders regeneration in organoids. Dynamical system analysis and agent-based multiscale stochastic modeling suggest that the positive feedback enhances the robustness of Notch-mediated niche patterning. This study highlights the importance of feedback mechanisms in spatiotemporal control of the stem cell niche.


Assuntos
Retroalimentação Fisiológica , Intestinos/citologia , Receptor Notch1/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Autorrenovação Celular , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Mutação , Organoides/metabolismo , Receptor Notch1/química , Transdução de Sinais , Nicho de Células-Tronco , Processos Estocásticos , Biologia de Sistemas/métodos
3.
Exp Mol Med ; 56(3): 495-500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424189

RESUMO

The intestinal epithelium is the first line of defense and acts as an interface between the vast microbial world within the gastrointestinal tract and the body's internal milieu. The intestinal epithelium not only facilitates nutrient absorption but also plays a key role in defending against pathogens and regulating the immune system. Central to maintaining a healthy epithelium are intestinal stem cells (ISCs), which are essential for replenishing the intestinal epithelium throughout an individual's lifespan. Recent research has unveiled the intricate interplay between ISCs and their niche, which includes various cell types, extracellular components, and signaling molecules. In this review, we delve into the most recent advances in ISC research, with a focus on the roles of ISCs in maintaining mucosal homeostasis and how ISC functionality is influenced by the niche environment. In this review, we explored the regulatory mechanisms that govern ISC behavior, emphasizing the dynamic adaptability of the intestinal epithelium in the face of various challenges. Understanding the intricate regulation of ISCs and the impact of aging and environmental factors is crucial for advancing our knowledge and developing translational approaches. Future studies should investigate the interactive effects of different risk factors on intestinal function and develop strategies for improving the regenerative capacity of the gut.


Assuntos
Mucosa Intestinal , Células-Tronco , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Transdução de Sinais , Homeostase
4.
Nat Genet ; 56(7): 1456-1467, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38902475

RESUMO

According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, has been shown to suppress intestinal stemness. Here, we used Paneth cells as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation in mice. Upon inflammation, Paneth cell-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in patients with inflammatory bowel disease, but also of a larger fraction of human sporadic colon cancers. The latter is possibly because of the inflammatory consequences of western-style dietary habits, a major colon cancer risk factor. Machine learning methods designed to predict the cell-of-origin of cancer from patient-derived tumor samples confirmed that, in a substantial fraction of sporadic cases, the origins of colon cancer reside in secretory lineages and not in stem cells.


Assuntos
Carcinogênese , Linhagem da Célula , Neoplasias do Colo , Inflamação , Celulas de Paneth , Animais , Camundongos , Linhagem da Célula/genética , Celulas de Paneth/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Carcinogênese/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Mutação , Células-Tronco/patologia , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Proteína da Polipose Adenomatosa do Colo/genética , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia
5.
Health Sci Rep ; 6(9): e1321, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720169

RESUMO

Background and Aims: Korea's golf population surpassed 5 million (5.15 million) as of 2020 according to data analyzed by Shinhan Financial Investment in 2021. Due to the continuous increase in the golf population, it is necessary to study the use of specific sunscreens. Men and women are using sunscreen selective attributes based on the actual use and perception of sunscreens for life. A questionnaire survey was conducted for an analysis of the effect of product satisfaction. Methods: Statistical processing of materials collected by the data analysis method is analyzed using the Statistical Package for Social Science WIN 25.0 statistical package program through the process of data coding and data cleaning. Results: This exercise was done under 3-4 h of strong ultraviolet (UV) rays, so products that have ensured the durability of UV protection are needed. Among the demographic characteristics of the golf population, gender, age, academic background, occupation, marriage status, and monthly income were investigated, and it was confirmed that the information path of a particular product was affected by the choice of purchase, increasing satisfaction and repurchase. Conclusion: An analysis of the paper's survey showed that men's awareness and interest in sunscreens increased. It is expected that differentiated strategies will be needed for products that match the actual conditions and aptitudes of the effective golf population.

6.
Sci Rep ; 13(1): 17473, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838775

RESUMO

Notch signaling determines cell fates in mouse intestine. Notch receptors contain multiple epidermal growth factor-like (EGF) repeats modified by O-glycans that regulate Notch signaling. Conditional deletion of protein O-fucosyltransferase 1 (Pofut1) substantially reduces Notch signaling and markedly perturbs lineage development in mouse intestine. However, mice with inactivated Pofut1 are viable, whereas complete elimination of Notch signaling in intestine is lethal. Here we investigate whether residual Notch signaling enabled by EGF-domain-specific O-linked N-acetylglucosamine transferase (Eogt) permits mice conditionally lacking Pofut1 in intestine to survive. Mice globally lacking Eogt alone were grossly unaffected in intestinal development. In contrast, mice lacking both Eogt and Pofut1 died at ~ 28 days after birth with greater loss of body weight, a greater increase in the number of goblet and Paneth cells, and greater downregulation of the Notch target gene Hes1, compared to Pofut1 deletion alone. These data reveal that both O-fucose and O-GlcNAc glycans are fundamental to Notch signaling in the intestine and provide new insights into roles for O-glycans in regulating Notch ligand binding. Finally, EOGT and O-GlcNAc glycans provide residual Notch signaling and support viability in mice lacking Pofut1 in the intestine.


Assuntos
Fator de Crescimento Epidérmico , Receptores Notch , Animais , Camundongos , Linhagem Celular , Polissacarídeos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
7.
Mol Cancer Res ; 21(8): 808-824, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37097719

RESUMO

New Western-style diet 1 (NWD1), a purified diet establishing mouse exposure to key nutrients recapitulating levels that increase human risk for intestinal cancer, reproducibly causes mouse sporadic intestinal and colonic tumors reflecting human etiology, incidence, frequency, and lag with developmental age. Complex NWD1 stem cell and lineage reprogramming was deconvolved by bulk and single-cell RNA sequencing, single-cell Assay for Transposase-Accessible Chromatin using sequencing, functional genomics, and imaging. NWD1 extensively, rapidly, and reversibly, reprogrammed Lgr5hi stem cells, epigenetically downregulating Ppargc1a expression, altering mitochondrial structure and function. This suppressed Lgr5hi stem cell functions and developmental maturation of Lgr5hi cell progeny as cells progressed through progenitor cell compartments, recapitulated by Ppargc1a genetic inactivation in Lgr5hi cells in vivo. Mobilized Bmi1+, Ascl2hi cells adapted lineages to the nutritional environment and elevated antigen processing and presentation pathways, especially in mature enterocytes, causing chronic, protumorigenic low-level inflammation. There were multiple parallels between NWD1 remodeling of stem cells and lineages with pathogenic mechanisms in human inflammatory bowel disease, also protumorigenic. Moreover, the shift to alternate stem cells reflects that the balance between Lgr5-positive and -negative stem cells in supporting human colon tumors is determined by environmental influences. Stem cell and lineage plasticity in response to nutrients supports historic concepts of homeostasis as a continual adaptation to environment, with the human mucosa likely in constant flux in response to changing nutrient exposures. IMPLICATIONS: Although oncogenic mutations provide a competitive advantage to intestinal epithelial cells in clonal expansion, the competition is on a playing field dynamically sculpted by the nutritional environment, influencing which cells dominate in mucosal maintenance and tumorigenesis.


Assuntos
Neoplasias do Colo , Mucosa Intestinal , Humanos , Camundongos , Animais , Mucosa Intestinal/patologia , Plasticidade Celular , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/genética , Células-Tronco/metabolismo , Inflamação/patologia
8.
Res Sq ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711533

RESUMO

Paneth cells (PCs), responsible for the secretion of antimicrobial peptides in the small intestine and for niche support to Lgr5+ crypt-base columnar stem cells (CBCs), have been shown to respond to inflammation by dedifferentiating into stem-like cells in order to sustain a regenerative response1,2. Therefore, PCs may represent the cells-of-origin of intestinal cancer in the context of inflammation. To test this hypothesis, we targeted Apc, Kras, and Tp53 mutations in Paneth cells by Cre-Lox technology and modelled inflammation by dextran sodium sulfate (DSS) administration. PC-specific loss of Apc resulted in multiple small intestinal tumors, whereas Kras or Tp53 mutations did not. Compound Apc and Kras mutations in PCs resulted in a striking increase in tumor multiplicity even in the absence of the inflammatory insult. By combining scRNAseq with lineage tracing to capture the conversion of PCs into bona fide tumor cells, we show that they progress through a "revival stem cell" (RSC) state characterized by high Clusterin (Clu) expression and Yap1 signaling, reminiscent of what has been previously observed upon irradiation of the mouse digestive tract3. Accordingly, comparison of PC- and Lgr5-derived murine intestinal tumors revealed differences related to Wnt signaling and inflammatory pathways which match the dichotomy of CBCs and injury-induced RSCs4 between human sporadic colon cancers and those arising in the context of inflammatory bowel diseases. Last, we show that western-style dietary habits, known to trigger a low-grade inflammation throughout the intestinal tract, underlie the analogous dedifferentiation of Paneth cells and their acquisition of stem-like features. Taken together, our results show that intestinal cancer arises in the context of inflammation through the dedifferentiation of committed secretory lineages such as Paneth cells and the activation of the revival stem cell state. As such, a true quiescent stem cell identity may be hidden in fully committed and postmitotic lineages which, upon inflammation, support the regenerative response by re-entering the cell cycle and dedifferentiating into RSCs. The chronic nature of the tissue insult in inflammatory bowel diseases and even in the context of western-style dietary habits is likely to result in the expansion of cell targets for tumor initiation and progression.

9.
Aging Cell ; 22(5): e13802, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36864750

RESUMO

The intestinal epithelium consists of cells derived from continuously cycling Lgr5hi intestinal stem cells (Lgr5hi ISCs) that mature developmentally in an ordered fashion as the cells progress along the crypt-luminal axis. Perturbed function of Lgr5hi ISCs with aging is documented, but the consequent impact on overall mucosal homeostasis has not been defined. Using single-cell RNA sequencing, the progressive maturation of progeny was dissected in the mouse intestine, which revealed that transcriptional reprogramming with aging in Lgr5hi ISCs retarded the maturation of cells in their progression along the crypt-luminal axis. Importantly, treatment with metformin or rapamycin at a late stage of mouse lifespan reversed the effects of aging on the function of Lgr5hi ISCs and subsequent maturation of progenitors. The effects of metformin and rapamycin overlapped in reversing changes of transcriptional profiles but were also complementary, with metformin more efficient than rapamycin in correcting the developmental trajectory. Therefore, our data identify novel effects of aging on stem cells and the maturation of their daughter cells contributing to the decline of epithelial regeneration and the correction by geroprotectors.


Assuntos
Intestinos , Metformina , Camundongos , Animais , Células-Tronco , Mucosa Intestinal , Senescência Celular/genética , Envelhecimento/genética , Metformina/farmacologia , Receptores Acoplados a Proteínas G/genética
10.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873142

RESUMO

According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, was shown to suppress intestinal stemness. Here, we employed Paneth cells (PCs) as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation. Upon inflammation, PC-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in inflammatory bowel disease (IBD) patients but also of a larger fraction of sporadic colon cancers. The latter is likely due to the inflammatory consequences of Western-style dietary habits, the major colon cancer risk factor. Computational methods designed to predict the cell-of-origin of cancer confirmed that, in a substantial fraction of sporadic colon cancers the cells-of-origin are secretory lineages and not stem cells.

11.
Sci Rep ; 9(1): 13992, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570744

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 8(1): 10989, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030455

RESUMO

Despite the continuous renewal and turnover of the small intestinal epithelium, the intestinal crypt maintains a 'soccer ball-like', alternating pattern of stem and Paneth cells at the base of the crypt. To study the robustness of the alternating pattern, we used intravital two-photon microscopy in mice with fluorescently-labeled Lgr5+ intestinal stem cells and precisely perturbed the mosaic pattern with femtosecond laser ablation. Ablation of one to three cells initiated rapid motion of crypt cells that restored the alternation in the pattern within about two hours with only the rearrangement of pre-existing cells, without any cell division. Crypt cells then performed a coordinated dilation of the crypt lumen, which resulted in peristalsis-like motion that forced damaged cells out of the crypt. Crypt cell motion was reduced with inhibition of the ROCK pathway and attenuated with old age, and both resulted in incomplete pattern recovery. This suggests that in addition to proliferation and self-renewal, motility of stem cells is critical for maintaining homeostasis. Reduction of this newly-identified behavior of stem cells could contribute to disease and age-related changes.


Assuntos
Envelhecimento/patologia , Movimento Celular/fisiologia , Mucosa Intestinal/fisiologia , Células-Tronco/citologia , Animais , Homeostase , Mucosa Intestinal/lesões , Mucosa Intestinal/patologia , Microscopia Intravital , Terapia a Laser , Camundongos , Peristaltismo
13.
Nat Commun ; 7: 11800, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270085

RESUMO

The enteric nervous system (ENS) is a major division of the nervous system and vital to the gastrointestinal (GI) tract and its communication with the rest of the body. Unlike the brain and spinal cord, relatively little is known about the ENS in part because of the inability to directly monitor its activity in live animals. Here, we integrate a transparent graphene sensor with a customized abdominal window for simultaneous optical and electrical recording of the ENS in vivo. The implanted device captures ENS responses to neurotransmitters, drugs and optogenetic manipulation in real time.


Assuntos
Fenômenos Eletrofisiológicos , Sistema Nervoso Entérico/fisiologia , Fenômenos Ópticos , Abdome/cirurgia , Animais , Eletrodos , Fluorescência , Grafite/química , Imageamento Tridimensional , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica
14.
Nat Biotechnol ; 33(6): 656-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26006007

RESUMO

Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired subcutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening.


Assuntos
Neoplasias Colorretais/genética , Modelos Animais de Doenças , Neoplasias Hepáticas Experimentais/genética , Receptores CCR/genética , Animais , Blastocisto/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Neoplasias Hepáticas Experimentais/secundário , Camundongos , Metástase Neoplásica , Receptores CCR/administração & dosagem , Receptores CCR/biossíntese , Receptores Notch/biossíntese , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa