Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37258453

RESUMO

Protein is the most important component in organisms and plays an indispensable role in life activities. In recent years, a large number of intelligent methods have been proposed to predict protein function. These methods obtain different types of protein information, including sequence, structure and interaction network. Among them, protein sequences have gained significant attention where methods are investigated to extract the information from different views of features. However, how to fully exploit the views for effective protein sequence analysis remains a challenge. In this regard, we propose a multi-view, multi-scale and multi-attention deep neural model (MMSMA) for protein function prediction. First, MMSMA extracts multi-view features from protein sequences, including one-hot encoding features, evolutionary information features, deep semantic features and overlapping property features based on physiochemistry. Second, a specific multi-scale multi-attention deep network model (MSMA) is built for each view to realize the deep feature learning and preliminary classification. In MSMA, both multi-scale local patterns and long-range dependence from protein sequences can be captured. Third, a multi-view adaptive decision mechanism is developed to make a comprehensive decision based on the classification results of all the views. To further improve the prediction performance, an extended version of MMSMA, MMSMAPlus, is proposed to integrate homology-based protein prediction under the framework of multi-view deep neural model. Experimental results show that the MMSMAPlus has promising performance and is significantly superior to the state-of-the-art methods. The source code can be found at https://github.com/wzy-2020/MMSMAPlus.


Assuntos
Redes Neurais de Computação , Proteínas , Sequência de Aminoácidos , Software , Análise de Sequência de Proteína
2.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38483285

RESUMO

MOTIVATION: Drug-target interaction (DTI) prediction refers to the prediction of whether a given drug molecule will bind to a specific target and thus exert a targeted therapeutic effect. Although intelligent computational approaches for drug target prediction have received much attention and made many advances, they are still a challenging task that requires further research. The main challenges are manifested as follows: (i) most graph neural network-based methods only consider the information of the first-order neighboring nodes (drug and target) in the graph, without learning deeper and richer structural features from the higher-order neighboring nodes. (ii) Existing methods do not consider both the sequence and structural features of drugs and targets, and each method is independent of each other, and cannot combine the advantages of sequence and structural features to improve the interactive learning effect. RESULTS: To address the above challenges, a Multi-view Integrated learning Network that integrates Deep learning and Graph Learning (MINDG) is proposed in this study, which consists of the following parts: (i) a mixed deep network is used to extract sequence features of drugs and targets, (ii) a higher-order graph attention convolutional network is proposed to better extract and capture structural features, and (iii) a multi-view adaptive integrated decision module is used to improve and complement the initial prediction results of the above two networks to enhance the prediction performance. We evaluate MINDG on two dataset and show it improved DTI prediction performance compared to state-of-the-art baselines. AVAILABILITY AND IMPLEMENTATION: https://github.com/jnuaipr/MINDG.


Assuntos
Algoritmos , Redes Neurais de Computação
3.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34571539

RESUMO

Circular RNAs (circRNAs) generally bind to RNA-binding proteins (RBPs) to play an important role in the regulation of autoimmune diseases. Thus, it is crucial to study the binding sites of RBPs on circRNAs. Although many methods, including traditional machine learning and deep learning, have been developed to predict the interactions between RNAs and RBPs, and most of them are focused on linear RNAs. At present, few studies have been done on the binding relationships between circRNAs and RBPs. Thus, in-depth research is urgently needed. In the existing circRNA-RBP binding site prediction methods, circRNA sequences are the main research subjects, but the relevant characteristics of circRNAs have not been fully exploited, such as the structure and composition information of circRNA sequences. Some methods have extracted different views to construct recognition models, but how to efficiently use the multi-view data to construct recognition models is still not well studied. Considering the above problems, this paper proposes a multi-view classification method called DMSK based on multi-view deep learning, subspace learning and multi-view classifier for the identification of circRNA-RBP interaction sites. In the DMSK method, first, we converted circRNA sequences into pseudo-amino acid sequences and pseudo-dipeptide components for extracting high-dimensional sequence features and component features of circRNAs, respectively. Then, the structure prediction method RNAfold was used to predict the secondary structure of the RNA sequences, and the sequence embedding model was used to extract the context-dependent features. Next, we fed the above four views' raw features to a hybrid network, which is composed of a convolutional neural network and a long short-term memory network, to obtain the deep features of circRNAs. Furthermore, we used view-weighted generalized canonical correlation analysis to extract four views' common features by subspace learning. Finally, the learned subspace common features and multi-view deep features were fed to train the downstream multi-view TSK fuzzy system to construct a fuzzy rule and fuzzy inference-based multi-view classifier. The trained classifier was used to predict the specific positions of the RBP binding sites on the circRNAs. The experiments show that the prediction performance of the proposed method DMSK has been improved compared with the existing methods. The code and dataset of this study are available at https://github.com/Rebecca3150/DMSK.


Assuntos
Aprendizado Profundo , RNA Circular , Sítios de Ligação , Proteínas de Transporte/metabolismo , Biologia Computacional/métodos , Humanos
4.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35907779

RESUMO

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.


Assuntos
RNA Circular , Neoplasias Gástricas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Aprendizado de Máquina , Neoplasias Gástricas/genética
5.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561093

RESUMO

MOTIVATION: CircRNAs play a critical regulatory role in physiological processes, and the abnormal expression of circRNAs can mediate the processes of diseases. Therefore, exploring circRNAs-disease associations is gradually becoming an important area of research. Due to the high cost of validating circRNA-disease associations using traditional wet-lab experiments, novel computational methods based on machine learning are gaining more and more attention in this field. However, current computational methods suffer to insufficient consideration of latent features in circRNA-disease interactions. RESULTS: In this study, a multilayer attention neural graph-based collaborative filtering (MLNGCF) is proposed. MLNGCF first enhances multiple biological information with autoencoder as the initial features of circRNAs and diseases. Then, by constructing a central network of different diseases and circRNAs, a multilayer cooperative attention-based message propagation is performed on the central network to obtain the high-order features of circRNAs and diseases. A neural network-based collaborative filtering is constructed to predict the unknown circRNA-disease associations and update the model parameters. Experiments on the benchmark datasets demonstrate that MLNGCF outperforms state-of-the-art methods, and the prediction results are supported by the literature in the case studies. AVAILABILITY AND IMPLEMENTATION: The source codes and benchmark datasets of MLNGCF are available at https://github.com/ABard0/MLNGCF.


Assuntos
Redes Neurais de Computação , RNA Circular , Aprendizado de Máquina , Software , Biologia Computacional/métodos
6.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32808039

RESUMO

RNA-binding protein (RBP) is a class of proteins that bind to and accompany RNAs in regulating biological processes. An RBP may have multiple target RNAs, and its aberrant expression can cause multiple diseases. Methods have been designed to predict whether a specific RBP can bind to an RNA and the position of the binding site using binary classification model. However, most of the existing methods do not take into account the binding similarity and correlation between different RBPs. While methods employing multiple labels and Long Short Term Memory Network (LSTM) are proposed to consider binding similarity between different RBPs, the accuracy remains low due to insufficient feature learning and multi-label learning on RNA sequences. In response to this challenge, the concept of RNA-RBP Binding Network (RRBN) is proposed in this paper to provide theoretical support for multi-label learning to identify RBPs that can bind to RNAs. It is experimentally shown that the RRBN information can significantly improve the prediction of unknown RNA-RBP interactions. To further improve the prediction accuracy, we present the novel computational method iDeepMV which integrates multi-view deep learning technology under the multi-label learning framework. iDeepMV first extracts data from the views of amino acid sequence and dipeptide component based on the RNA sequences as the original view. Deep neural network models are then designed for the respective views to perform deep feature learning. The extracted deep features are fed into multi-label classifiers which are trained with the RNA-RBP interaction information for the three views. Finally, a voting mechanism is designed to make comprehensive decision on the results of the multi-label classifiers. Our experimental results show that the prediction performance of iDeepMV, which combines multi-view deep feature learning models with RNA-RBP interaction information, is significantly better than that of the state-of-the-art methods. iDeepMV is freely available at http://www.csbio.sjtu.edu.cn/bioinf/iDeepMV for academic use. The code is freely available at http://github.com/uchihayht/iDeepMV.


Assuntos
Aprendizado de Máquina , Proteínas de Ligação a RNA/metabolismo , Biologia Computacional/métodos , Redes Neurais de Computação
7.
Appl Intell (Dordr) ; : 1-17, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36718382

RESUMO

Domain adaptation (DA) is a popular strategy for pattern recognition and classification tasks. It leverages a large amount of data from the source domain to help train the model applied in the target domain. Supervised domain adaptation (SDA) approaches are desirable when only few labeled samples from the target domain are available. They can be easily adopted in many real-world applications where data collection is expensive. In this study, we propose a new supervision signal, namely center transfer loss (CTL), to efficiently align features under the SDA setting in the deep learning (DL) field. Unlike most previous SDA methods that rely on pairing up training samples, the proposed loss is trainable only using one-stream input based on the mini-batch strategy. The CTL exhibits two main functionalities in training to increase the performance of DL models, i.e., domain alignment and increasing the feature's discriminative power. The hyper-parameter to balance these two functionalities is waived in CTL, which is the second improvement from the previous approaches. Extensive experiments completed on well-known public datasets show that the proposed method performs better than recent state-of-the-art approaches.

8.
Chaos Solitons Fractals ; 146: 110922, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33824550

RESUMO

Prediction of COVID-19 spread plays a significant role in the epidemiology study and government battles against the epidemic. However, the existing studies on COVID-19 prediction are dominated by constant model parameters, unable to reflect the actual situation of COVID-19 spread. This paper presents a new method for dynamic prediction of COVID-19 spread by considering time-dependent model parameters. This method discretises the susceptible-exposed-infected-recovered-dead (SEIRD) epidemiological model in time domain to construct the nonlinear state-space equation for dynamic estimation of COVID-19 spread. A maximum likelihood estimation theory is established to online estimate time-dependent model parameters. Subsequently, an extended Kalman filter is developed to estimate dynamic COVID-19 spread based on the online estimated model parameters. The proposed method is applied to simulate and analyse the COVID-19 pandemics in China and the United States based on daily reported cases, demonstrating its efficacy in modelling and prediction of COVID-19 spread.

9.
Hu Li Za Zhi ; 67(5): 12-18, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-32978761

RESUMO

The rapid development of artificial intelligence (AI) technologies in recent decades has led to innovation and new development opportunities in many industries. The application of AI technologies in the medical and healthcare sector offers significant potential benefit. In this paper, the integration of AI into healthcare research is introduced to encourage more medical and healthcare experts to research this promising cross-disciplinary area. After introducing the basic concepts that underlie AI, the two major schools of machine learning approaches, namely 'supervised learning' and 'unsupervised learning', are discussed. Next, two commonly used algorithms (artificial neural networks and decision trees) are discussed. The paper then focuses on three healthcare applications of AI technologies, including predicting postoperative mortality, quality of life in older adults, and risk of dementia. Finally, the challenges to integrating AI into healthcare research such as class imbalance, missing data, and data scarcity are discussed along with feasible approaches to resolving these challenges.


Assuntos
Inteligência Artificial , Pesquisa sobre Serviços de Saúde/organização & administração , Humanos
10.
Comput Inform Nurs ; 34(10): 476-483, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27315367

RESUMO

Patients undergoing hemodialysis are highly susceptible to infections, which could lead to morbidity and mortality. One of the major sources of infections stems from the mishandling of hemodialysis access sites. Although healthcare workers receive training on how to aseptically handle hemodialysis catheters, the increasing number of blood infections associated with dialysis suggests that the conventional approach to training may not be sufficient to ensure a clear understanding of the necessary knowledge and skills. With advancements in digital technology, computer-assisted learning has been gaining popularity as an approach to teaching clinical skills. The purpose of this study was to evaluate the effectiveness of a computer-based training system developed to teach healthcare workers catheter-access hemodialysis management. Forty nurses were recruited and randomly assigned into two groups: the control group, which received conventional training only; and the experimental group, which received both conventional and computer-based training. A knowledge test and a skills competence test were administered to both groups before and after the intervention to evaluate their performance. The results show that the performance of the nurses in the experimental group was significantly better than that in the control group, indicating that the proposed training system is an effective tool for supplementing the learning of catheter-access hemodialysis management.


Assuntos
Competência Clínica , Instrução por Computador/métodos , Controle de Infecções , Diálise Renal/métodos , Adulto , Gerenciamento Clínico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autorrelato , Inquéritos e Questionários
11.
Comput Inform Nurs ; 33(2): 49-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25521788

RESUMO

The use of personal protective equipment is one of the basic infection control precautions in health care. The effectiveness of personal protective equipment is highly dependent on adequate staff training. In this project, a computer simulation program, as a supplement to conventional training approaches, was developed to facilitate the learning of the proper use of personal protective equipment. The simulation program was a Web-based interactive software with user-friendly graphical interface for users to practice the use of personal protective equipment usage via drag-and-drop metaphors and respond to questions online. The effectiveness of the computer simulation software was investigated by a controlled study. Fifty healthcare workers were randomly assigned into two groups: one received conventional personal protective equipment training only (control group), whereas the other also received the same conventional training but followed by using the developed simulation program for self-learning (experimental group). Their performance was assessed by personal protective equipment donning and doffing evaluation before and after the training. The results showed that the computer simulation program is able to improve the healthcare workers' understanding and competence in using personal protective equipment.


Assuntos
Simulação por Computador , Pessoal de Saúde/educação , Equipamento de Proteção Individual , Treinamento por Simulação , Adulto , Educação em Enfermagem , Humanos , Controle de Infecções , Internet , Pessoa de Meia-Idade , Adulto Jovem
12.
Med Image Anal ; 91: 103014, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913578

RESUMO

Cell classification underpins intelligent cervical cancer screening, a cytology examination that effectively decreases both the morbidity and mortality of cervical cancer. This task, however, is rather challenging, mainly due to the difficulty of collecting a training dataset representative sufficiently of the unseen test data, as there are wide variations of cells' appearance and shape at different cancerous statuses. This difficulty makes the classifier, though trained properly, often classify wrongly for cells that are underrepresented by the training dataset, eventually leading to a wrong screening result. To address it, we propose a new learning algorithm, called worse-case boosting, for classifiers effectively learning from under-representative datasets in cervical cell classification. The key idea is to learn more from worse-case data for which the classifier has a larger gradient norm compared to other training data, so these data are more likely to correspond to underrepresented data, by dynamically assigning them more training iterations and larger loss weights for boosting the generalizability of the classifier on underrepresented data. We achieve this idea by sampling worse-case data per the gradient norm information and then enhancing their loss values to update the classifier. We demonstrate the effectiveness of this new learning algorithm on two publicly available cervical cell classification datasets (the two largest ones to the best of our knowledge), and positive results (4% accuracy improvement) yield in the extensive experiments. The source codes are available at: https://github.com/YouyiSong/Worse-Case-Boosting.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Detecção Precoce de Câncer , Algoritmos , Software
13.
Artigo em Inglês | MEDLINE | ID: mdl-38015669

RESUMO

As a class of extremely significant of biocatalysts, enzymes play an important role in the process of biological reproduction and metabolism. Therefore, the prediction of enzyme function is of great significance in biomedicine fields. Recently, computational methods for predicting enzyme function have been proposed, and they effectively reduce the cost of enzyme function prediction. However, there are still deficiencies for effectively mining the discriminant information for enzyme function recognition in existing methods. In this study, we present MVDINET, a novel method for multi-level enzyme function prediction. First, the initial multi-view feature data is extracted by the enzyme sequence. Then, the above initial views are fed into various deep specific network modules to learn the depth-specificity information. Further, a deep view interaction network is designed to extract the interaction information. Finally, the specificity information and interaction information are fed into a multi-view adaptively weighted classification. We compressively evaluate MVDINET on benchmark datasets and demonstrate that MVDINET is superior to existing methods.


Assuntos
Benchmarking , Treinamento por Simulação , Reprodução
14.
IEEE Trans Biomed Eng ; 71(5): 1587-1598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38113159

RESUMO

OBJECTIVE: Convolutional neural network (CNN), a classical structure in deep learning, has been commonly deployed in the motor imagery brain-computer interface (MIBCI). Many methods have been proposed to evaluate the vulnerability of such CNN models, primarily by attacking them using direct temporal perturbations. In this work, we propose a novel attacking approach based on perturbations in the frequency domain instead. METHODS: For a given natural MI trial in the frequency domain, the proposed approach, called frequency domain channel-wise attack (FDCA), generates perturbations at each channel one after another to fool the CNN classifiers. The advances of this strategy are two-fold. First, instead of focusing on the temporal domain, perturbations are generated in the frequency domain where discriminative patterns can be extracted for motor imagery (MI) classification tasks. Second, the perturbing optimization is performed based on differential evolution algorithm in a black-box scenario where detailed model knowledge is not required. RESULTS: Experimental results demonstrate the effectiveness of the proposed FDCA which achieves a significantly higher success rate than the baselines and existing methods in attacking three major CNN classifiers on four public MI benchmarks. CONCLUSION: Perturbations generated in the frequency domain yield highly competitive results in attacking MIBCI deployed by CNN models even in a black-box setting, where the model information is well-protected. SIGNIFICANCE: To our best knowledge, existing MIBCI attack approaches are all gradient-based methods and require details about the victim model, e.g., the parameters and objective function. We provide a more flexible strategy that does not require model details but still produces an effective attack outcome.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Imaginação , Redes Neurais de Computação , Humanos , Imaginação/fisiologia , Segurança Computacional , Processamento de Sinais Assistido por Computador
15.
Neural Netw ; 164: 439-454, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182346

RESUMO

Cross-network node classification (CNNC), which aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels, draws increasing attention recently. To address CNNC, we propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation. DM-GNN is capable of learning informative representations for node classification that are also transferrable across networks. Firstly, a GNN encoder is constructed by dual feature extractors to separate ego-embedding learning from neighbor-embedding learning so as to jointly capture commonality and discrimination between connected nodes. Secondly, a label propagation node classifier is proposed to refine each node's label prediction by combining its own prediction and its neighbors' prediction. In addition, a label-aware propagation scheme is devised for the labeled source network to promote intra-class propagation while avoiding inter-class propagation, thus yielding label-discriminative source embeddings. Thirdly, conditional adversarial domain adaptation is performed to take the neighborhood-refined class-label information into account during adversarial domain adaptation, so that the class-conditional distributions across networks can be better matched. Comparisons with eleven state-of-the-art methods demonstrate the effectiveness of the proposed DM-GNN.


Assuntos
Conhecimento , Redes Neurais de Computação
16.
Bioengineering (Basel) ; 10(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37237632

RESUMO

Deformable lung CT image registration is an essential task for computer-assisted interventions and other clinical applications, especially when organ motion is involved. While deep-learning-based image registration methods have recently achieved promising results by inferring deformation fields in an end-to-end manner, large and irregular deformations caused by organ motion still pose a significant challenge. In this paper, we present a method for registering lung CT images that is tailored to the specific patient being imaged. To address the challenge of large deformations between the source and target images, we break the deformation down into multiple continuous intermediate fields. These fields are then combined to create a spatio-temporal motion field. We further refine this field using a self-attention layer that aggregates information along motion trajectories. By leveraging temporal information from a respiratory cycle, our proposed methods can generate intermediate images that facilitate image-guided tumor tracking. We evaluated our approach extensively on a public dataset, and our numerical and visual results demonstrate the effectiveness of the proposed method.

17.
J Mech Behav Biomed Mater ; 137: 105553, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375275

RESUMO

Realistic modelling of human soft tissue is very important in medical applications. This paper proposes a novel method by dynamically incorporating soft tissue characterisation in the process of soft tissue modelling to increase the modelling fidelity. This method defines nonlinear tissue deformation with unknown mechanical properties as a problem of nonlinear filtering identification to dynamically identify mechanical properties and further estimate nonlinear deformation behaviour of soft tissue. It combines maximum likelihood theory, nonlinear filtering and nonlinear finite element method (NFEM) for modelling of nonlinear tissue deformation behaviour based on dynamic identification of homogeneous tissue properties. On the basis of hyperelasticity, a nonlinear state-space equation is established by discretizing tissue deformation through NFEM for dynamic filtering. A maximum likelihood algorithm is also established to dynamically identify tissue mechanical properties during the deformation process. Upon above, a maximum likelihood-based extended Kalman filter is further developed for dynamically estimating tissue nonlinear deformation based on dynamic identification of tissue mechanical properties. Simulation and experimental analyses reveal that the proposed method not only overcomes the NFEM limitation of expensive computations, but also absorbs the NFEM merit of high accuracy for modelling of homogeneous tissue deformation. Further, the proposed method also effectively identifies tissue mechanical properties during the deformation modelling process.


Assuntos
Algoritmos , Humanos , Funções Verossimilhança , Simulação por Computador
18.
IEEE Trans Med Imaging ; 42(5): 1431-1445, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015694

RESUMO

Collecting sufficient high-quality training data for deep neural networks is often expensive or even unaffordable in medical image segmentation tasks. We thus propose to train the network by using external data that can be collected in a cheaper way, e.g., crowd-sourcing. We show that by data discernment, the network is able to mine valuable knowledge from external data, even though the data distribution is very different from that of the original (internal) data. We discern the external data by learning an importance weight for each of them, with the goal to enhance the contribution of informative external data to network updating, while suppressing the data that are 'useless' or even 'harmful'. An iterative algorithm that alternatively estimates the importance weight and updates the network is developed by formulating the data discernment as a constrained nonlinear programming problem. It estimates the importance weight according to the distribution discrepancy between the external data and the internal dataset, and imposes a constraint to drive the network to learn more effectively, compared with the network without using the external data. We evaluate the proposed algorithm on two tasks: abdominal CT image and cervical smear image segmentation, using totally 6 publicly available datasets. The effectiveness of the algorithm is demonstrated by extensive experiments. Source codes are available at: https://github.com/YouyiSong/Data-Discernment.


Assuntos
Algoritmos , Crowdsourcing , Redes Neurais de Computação , Software , Processamento de Imagem Assistida por Computador
19.
Artigo em Inglês | MEDLINE | ID: mdl-37027749

RESUMO

Deep neural networks often suffer from performance inconsistency for multiorgan segmentation in medical images; some organs are segmented far worse than others. The main reason might be organs with different levels of learning difficulty for segmentation mapping, due to variations such as size, texture complexity, shape irregularity, and imaging quality. In this article, we propose a principled class-reweighting algorithm, termed dynamic loss weighting, which dynamically assigns a larger loss weight to organs if they are discriminated as more difficult to learn according to the data and network's status, for forcing the network to learn from them more to maximally promote the performance consistency. This new algorithm uses an extra autoencoder to measure the discrepancy between the segmentation network's output and the ground truth and dynamically estimates the loss weight of organs per the contribution of the organ to the new updated discrepancy. It can capture the variation in organs' learning difficult during training, and it is neither sensitive to data's property nor dependent on human priors. We evaluate this algorithm in two multiorgan segmentation tasks: abdominal organs and head-neck structures, on publicly available datasets, with positive results obtained from extensive experiments which confirm the validity and effectiveness. Source codes are available at: https://github.com/YouyiSong/Dynamic-Loss-Weighting.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37216234

RESUMO

Multiview data are widespread in real-world applications, and multiview clustering is a commonly used technique to effectively mine the data. Most of the existing algorithms perform multiview clustering by mining the commonly hidden space between views. Although this strategy is effective, there are two challenges that still need to be addressed to further improve the performance. First, how to design an efficient hidden space learning method so that the learned hidden spaces contain both shared and specific information of multiview data. Second, how to design an efficient mechanism to make the learned hidden space more suitable for the clustering task. In this study, a novel one-step multiview fuzzy clustering (OMFC-CS) method is proposed to address the two challenges by collaborative learning between the common and specific space information. To tackle the first challenge, we propose a mechanism to extract the common and specific information simultaneously based on matrix factorization. For the second challenge, we design a one-step learning framework to integrate the learning of common and specific spaces and the learning of fuzzy partitions. The integration is achieved in the framework by performing the two learning processes alternately and thereby yielding mutual benefit. Furthermore, the Shannon entropy strategy is introduced to obtain the optimal views weight assignment during clustering. The experimental results based on benchmark multiview datasets demonstrate that the proposed OMFC-CS outperforms many existing methods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa