Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(5): 307-328, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058649

RESUMO

Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-ß (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.


Assuntos
Carioferinas , beta Carioferinas , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Poro Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares , beta Carioferinas/metabolismo
2.
Cell ; 173(3): 693-705.e22, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677513

RESUMO

Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-ß2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-ß2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-ß2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-ß2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-ß2 may act analogously to control condensates in diverse cellular contexts.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Sítios de Ligação , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Carioferinas/metabolismo , Luz , Extração Líquido-Líquido , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Mutação , Nefelometria e Turbidimetria , Ligação Proteica , Domínios Proteicos , RNA/química , Espalhamento de Radiação , Temperatura
3.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677512

RESUMO

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Assuntos
Transporte Ativo do Núcleo Celular , Príons/química , Proteínas de Ligação a RNA/química , Receptores Citoplasmáticos e Nucleares/química , Adulto , Idoso , Animais , Citoplasma/química , Proteínas de Ligação a DNA/química , Drosophila melanogaster , Feminino , Proteínas de Fluorescência Verde/química , Células HEK293 , Células HeLa , Homeostase , Humanos , Carioferinas/química , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/química , Mutação , Doenças Neurodegenerativas/patologia , Domínios Proteicos , Proteína EWS de Ligação a RNA/química , Fatores Associados à Proteína de Ligação a TATA/química , beta Carioferinas/química
4.
Proc Natl Acad Sci U S A ; 120(29): e2301199120, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37450495

RESUMO

Previously, we showed that the nuclear import receptor Importin-9 wraps around the H2A-H2B core to chaperone and transport it from the cytoplasm to the nucleus. However, unlike most nuclear import systems where RanGTP dissociates cargoes from their importins, RanGTP binds stably to the Importin-9•H2A-H2B complex, and formation of the ternary RanGTP•Importin-9•H2A-H2B complex facilitates H2A-H2B release to the assembling nucleosome. It was unclear how RanGTP and the cargo H2A-H2B can bind simultaneously to an importin, and how interactions of the three components position H2A-H2B for release. Here, we show cryo-EM structures of Importin-9•RanGTP and of its yeast homolog Kap114, including Kap114•RanGTP, Kap114•H2A-H2B, and RanGTP•Kap114•H2A-H2B, to explain how the conserved Kap114 binds H2A-H2B and RanGTP simultaneously and how the GTPase primes histone transfer to the nucleosome. In the ternary complex, RanGTP binds to the N-terminal repeats of Kap114 in the same manner as in the Kap114/Importin-9•RanGTP complex, and H2A-H2B binds via its acidic patch to the Kap114 C-terminal repeats much like in the Kap114/Importin-9•H2A-H2B complex. Ran binds to a different conformation of Kap114 in the ternary RanGTP•Kap114•H2A-H2B complex. Here, Kap114 no longer contacts the H2A-H2B surface proximal to the H2A docking domain that drives nucleosome assembly, positioning it for transfer to the assembling nucleosome or to dedicated H2A-H2B chaperones in the nucleus.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligação Proteica , Carioferinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(38): e2207177119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36103578

RESUMO

IMPORTIN-4, the primary nuclear import receptor of core histones H3 and H4, binds the H3-H4 dimer and histone chaperone ASF1 prior to nuclear import. However, how H3-H3-ASF1 is recognized for transport cannot be explained by available crystal structures of IMPORTIN-4-histone tail peptide complexes. Our 3.5-Å IMPORTIN-4-H3-H4-ASF1 cryoelectron microscopy structure reveals the full nuclear import complex and shows a binding mode different from suggested by previous structures. The N-terminal half of IMPORTIN-4 clamps the globular H3-H4 domain and H3 αN helix, while its C-terminal half binds the H3 N-terminal tail weakly; tail contribution to binding energy is negligible. ASF1 binds H3-H4 without contacting IMPORTIN-4. Together, ASF1 and IMPORTIN-4 shield nucleosomal H3-H4 surfaces to chaperone and import it into the nucleus where RanGTP binds IMPORTIN-4, causing large conformational changes to release H3-H4-ASF1. This work explains how full-length H3-H4 binds IMPORTIN-4 in the cytoplasm and how it is released in the nucleus.


Assuntos
Chaperonas de Histonas , Histonas , Carioferinas , Proteínas de Membrana Transportadoras , Chaperonas Moleculares , Proteínas de Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Chaperonas de Histonas/química , Histonas/química , Humanos , Carioferinas/química , Proteínas de Membrana Transportadoras/química , Chaperonas Moleculares/química , Conformação Proteica , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química
6.
Bioinformatics ; 36(3): 961-963, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504173

RESUMO

MOTIVATION: The consensus pattern of Nuclear Export Signal (NES) is a short sequence motif that is commonly identified in protein sequences, whether the motif acts as an NES (true positive) or not (false positive). Finding more plausible NES functioning regions among the vast array of consensus-matching segments would provide an interesting resource for further experimental validation. Better defined NES should also allow meaningful mapping of cancer-related mutation positions, leading to plausible explanations for the relationship between nuclear export and disease. RESULTS: Possible NES candidate regions are extracted from the cancer-related human reference proteome. Extracted NES are scored for reliability by combining sequence-based and structure-based approaches. The confidently identified NES candidate motifs were checked for overlap with cancer-related mutation positions annotated in the COSMIC database. Among the ∼700 cancer-related sequences in the COSMIC Cancer Gene Census, 178 sequences are predicted to have possible NES motifs containing cancer-related mutations at their key positions. These lists are organized into our database (pCRM1exportome), and other protein sequences in the human reference proteome can also be retrieved by their UniProt IDs. AVAILABILITY AND IMPLEMENTATION: The database is freely available at http://prodata.swmed.edu/pCRM1exportome. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Sinais de Exportação Nuclear , Transporte Ativo do Núcleo Celular , Núcleo Celular , Humanos , Carioferinas , Receptores Citoplasmáticos e Nucleares , Reprodutibilidade dos Testes
7.
Proc Natl Acad Sci U S A ; 115(52): E12218-E12227, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30538201

RESUMO

The influenza virulence factor NS1 protein interacts with the cellular NS1-BP protein to promote splicing and nuclear export of the viral M mRNAs. The viral M1 mRNA encodes the M1 matrix protein and is alternatively spliced into the M2 mRNA, which is translated into the M2 ion channel. These proteins have key functions in viral trafficking and budding. To uncover the NS1-BP structural and functional activities in splicing and nuclear export, we performed proteomics analysis of nuclear NS1-BP binding partners and showed its interaction with constituents of the splicing and mRNA export machineries. NS1-BP BTB domains form dimers in the crystal. Full-length NS1-BP is a dimer in solution and forms at least a dimer in cells. Mutations suggest that dimerization is important for splicing. The central BACK domain of NS1-BP interacts directly with splicing factors such as hnRNP K and PTBP1 and with the viral NS1 protein. The BACK domain is also the site for interactions with mRNA export factor Aly/REF and is required for viral M mRNA nuclear export. The crystal structure of the C-terminal Kelch domain shows that it forms a ß-propeller fold, which is required for the splicing function of NS1-BP. This domain interacts with the polymerase II C-terminal domain and SART1, which are involved in recruitment of splicing factors and spliceosome assembly, respectively. NS1-BP functions are not only critical for processing a subset of viral mRNAs but also impact levels and nuclear export of a subset of cellular mRNAs encoding factors involved in metastasis and immunity.


Assuntos
Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cristalografia por Raios X , Dimerização , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/virologia , Proteínas Nucleares/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ligação Proteica , Domínios Proteicos , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Fatores de Transcrição/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
8.
Biochem Soc Trans ; 48(6): 2753-2767, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33300986

RESUMO

The transport of histones from the cytoplasm to the nucleus of the cell, through the nuclear membrane, is a cellular process that regulates the supply of new histones in the nucleus and is key for DNA replication and transcription. Nuclear import of histones is mediated by proteins of the karyopherin family of nuclear transport receptors. Karyopherins recognize their cargos through linear motifs known as nuclear localization/export sequences or through folded domains in the cargos. Karyopherins interact with nucleoporins, proteins that form the nuclear pore complex, to promote the translocation of their cargos into the nucleus. When binding to histones, karyopherins not only function as nuclear import receptors but also as chaperones, protecting histones from non-specific interactions in the cytoplasm, in the nuclear pore and possibly in the nucleus. Studies have also suggested that karyopherins might participate in histones deposition into nucleosomes. In this review we describe structural and biochemical studies from the last two decades on how karyopherins recognize and transport the core histone proteins H3, H4, H2A and H2B and the linker histone H1 from the cytoplasm to the nucleus, which karyopherin is the major nuclear import receptor for each of these histones, the oligomeric state of histones during nuclear import and the roles of post-translational modifications, histone-chaperones and RanGTP in regulating these nuclear import pathways.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Histonas/metabolismo , Carioferinas/química , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/metabolismo , GTP Fosfo-Hidrolases/química , Histonas/química , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(19): 5263-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114554

RESUMO

Regulation of nuclear-cytoplasmic trafficking of oncoproteins is critical for growth homeostasis. Dysregulated trafficking contributes to malignancy, whereas understanding the process can reveal unique therapeutic opportunities. Here, we focus on eukaryotic translation initiation factor 4E (eIF4E), a prooncogenic protein highly elevated in many cancers, including acute myeloid leukemia (AML). Typically, eIF4E is localized to both the nucleus and cytoplasm, where it acts in export and translation of specific methyl 7-guanosine (m(7)G)-capped mRNAs, respectively. Nuclear accumulation of eIF4E in patients who have AML is correlated with increased eIF4E-dependent export of transcripts encoding oncoproteins. The subcellular localization of eIF4E closely correlates with patients' responses. During clinical responses to the m(7)G-cap competitor ribavirin, eIF4E is mainly cytoplasmic. At relapse, eIF4E reaccumulates in the nucleus, leading to elevated eIF4E-dependent mRNA export. We have identified importin 8 as a factor that directly imports eIF4E into the nucleus. We found that importin 8 is highly elevated in untreated patients with AML, leading to eIF4E nuclear accumulation. Importin 8 only imports cap-free eIF4E. Cap-dependent changes to the structure of eIF4E underpin this selectivity. Indeed, m(7)G cap analogs or ribavirin prevents nuclear entry of eIF4E, which mirrors the trafficking phenotypes observed in patients with AML. Our studies also suggest that nuclear entry is important for the prooncogenic activity of eIF4E, at least in this context. These findings position nuclear trafficking of eIF4E as a critical step in its regulation and position the importin 8-eIF4E complex as a novel therapeutic target.


Assuntos
Núcleo Celular/metabolismo , Guanosina/análogos & derivados , Leucemia Mieloide Aguda/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Guanosina/metabolismo , Humanos , Transporte Proteico , Células Tumorais Cultivadas
10.
J Biol Chem ; 291(40): 21171-21183, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528606

RESUMO

N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impß, Kapß2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapß2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly. Mutagenic analysis shows H3 tail residues 11-27 to be the sole binding segment for Impß, Kapß2, and Imp4. However, Imp5, Imp7, Imp9, and Impα bind two separate elements in the H3 tail: the segment at residues 11-27 and an isoleucine-lysine nuclear localization signal (IK-NLS) motif at residues 35-40. The H4 tail also uses either one or two basic segments to bind the same set of Importins with a similar trend of relative affinities as the H3 tail, albeit at least 10-fold weaker. Of the many lysine residues in the H3 and H4 tails, only acetylation of the H3 Lys14 substantially decreased binding to several Importins. Lastly, we show that, in addition to the N-terminal tails, the histone fold domains of H3 and H4 and/or the histone chaperone Asf1b are important for Importin-histone recognition.


Assuntos
Histonas/química , Carioferinas/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagênese , Ligação Proteica , Domínios Proteicos
11.
Bioinformatics ; 31(9): 1357-65, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25515756

RESUMO

MOTIVATION: Classical nuclear export signals (NESs) are short cognate peptides that direct proteins out of the nucleus via the CRM1-mediated export pathway. CRM1 regulates the localization of hundreds of macromolecules involved in various cellular functions and diseases. Due to the diverse and complex nature of NESs, reliable prediction of the signal remains a challenge despite several attempts made in the last decade. RESULTS: We present a new NES predictor, LocNES. LocNES scans query proteins for NES consensus-fitting peptides and assigns these peptides probability scores using Support Vector Machine model, whose feature set includes amino acid sequence, disorder propensity, and the rank of position-specific scoring matrix score. LocNES demonstrates both higher sensitivity and precision over existing NES prediction tools upon comparative analysis using experimentally identified NESs. AVAILABILITY AND IMPLEMENTATION: LocNES is freely available at http://prodata.swmed.edu/LocNES CONTACT: yuhmin.chook@utsouthwestern.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Carioferinas/química , Sinais de Exportação Nuclear , Receptores Citoplasmáticos e Nucleares/química , Software , Sequência de Aminoácidos , Sequência Consenso , Humanos , Matrizes de Pontuação de Posição Específica , Análise de Sequência de Proteína , Máquina de Vetores de Suporte , Proteína Exportina 1
12.
Biochem J ; 468(3): 353-62, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26173234

RESUMO

The Karyopherin-ß family of proteins mediates nuclear transport of macromolecules. Nuclear versus cytoplasmic localization of proteins is often suggested by the presence of NLSs (nuclear localization signals) or NESs (nuclear export signals). Import-Karyopherin-ßs or Importins bind to NLSs in their protein cargos to transport them through nuclear pore complexes into the nucleus. Until recently, only two classes of NLS had been biochemically and structurally characterized: the classical NLS, which is recognized by the Importin-α/ß heterodimer and the PY-NLS (proline-tyrosine NLS), which is recognized by Karyopherin-ß2 or Transportin-1. Structures of two other Karyopherin-ßs, Kap121 and Transportin-SR2, in complex with their respective cargos were reported for the first time recently, revealing two new distinct classes of NLSs. The present paper briefly describes the classical NLS, reviews recent literature on the PY-NLS and provides in-depth reviews of the two newly discovered classes of NLSs that bind Kap121p and Transportin-SR respectively.


Assuntos
Núcleo Celular/metabolismo , Modelos Biológicos , Sinais de Localização Nuclear , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Humanos , Sinais de Exportação Nuclear , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , beta Carioferinas/química
13.
Proc Natl Acad Sci U S A ; 110(4): 1303-8, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297231

RESUMO

The polyketide natural product Leptomycin B inhibits nuclear export mediated by the karyopherin protein chromosomal region maintenance 1 (CRM1). Here, we present 1.8- to 2.0-Å-resolution crystal structures of CRM1 bound to Leptomycin B and related inhibitors Anguinomycin A and Ratjadone A. Structural and complementary chemical analyses reveal an unexpected mechanism of inhibition involving covalent conjugation and CRM1-mediated hydrolysis of the natural products' lactone rings. Furthermore, mutagenesis reveals the mechanism of hydrolysis by CRM1. The nuclear export signal (NES)-binding groove of CRM1 is able to drive a chemical reaction in addition to binding protein cargoes for transport through the nuclear pore complex.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Acrilatos/química , Acrilatos/farmacologia , Substituição de Aminoácidos , Cristalografia por Raios X , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Humanos , Hidrólise , Carioferinas/antagonistas & inibidores , Carioferinas/química , Carioferinas/genética , Modelos Anatômicos , Mutagênese Sítio-Dirigida , Sinais de Exportação Nuclear/genética , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática , Triazóis/química , Triazóis/farmacologia , Proteína Exportina 1
14.
Semin Cancer Biol ; 27: 52-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24631835

RESUMO

CRM1 or XPO1 is the major nuclear export receptor in the cell, which controls the nuclear-cytoplasmic localization of many proteins and RNAs. CRM1 is also a promising cancer drug target as the transport receptor is overexpressed in many cancers where some of its cargos are misregulated and mislocalized to the cytoplasm. Atomic level understanding of CRM1 function has greatly facilitated recent drug discovery and development of CRM1 inhibitors to target a variety of malignancies. Numerous atomic resolution CRM1 structures are now available, explaining how the exporter recognizes nuclear export signals in its cargos, how RanGTP and cargo bind with positive cooperativity, how RanBP1 causes release of export cargos in the cytoplasm and how diverse inhibitors such as Leptomycin B and the new KPT-SINE compounds block nuclear export. This review summarizes structure-function studies that explain CRM1-cargo recognition, release and inhibition.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Carioferinas/química , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Humanos , Carioferinas/antagonistas & inibidores , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Relação Estrutura-Atividade , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
15.
Nature ; 458(7242): 1136-41, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19339969

RESUMO

CRM1 (also known as XPO1 and exportin 1) mediates nuclear export of hundreds of proteins through the recognition of the leucine-rich nuclear export signal (LR-NES). Here we present the 2.9 A structure of CRM1 bound to snurportin 1 (SNUPN). Snurportin 1 binds CRM1 in a bipartite manner by means of an amino-terminal LR-NES and its nucleotide-binding domain. The LR-NES is a combined alpha-helical-extended structure that occupies a hydrophobic groove between two CRM1 outer helices. The LR-NES interface explains the consensus hydrophobic pattern, preference for intervening electronegative residues and inhibition by leptomycin B. The second nuclear export signal epitope is a basic surface on the snurportin 1 nucleotide-binding domain, which binds an acidic patch on CRM1 adjacent to the LR-NES site. Multipartite recognition of individually weak nuclear export signal epitopes may be common to CRM1 substrates, enhancing CRM1 binding beyond the generally low affinity LR-NES. Similar energetic construction is also used in multipartite nuclear localization signals to provide broad substrate specificity and rapid evolution in nuclear transport.


Assuntos
Carioferinas/química , Carioferinas/metabolismo , Leucina/metabolismo , Sinais de Exportação Nuclear/fisiologia , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Cristalografia por Raios X , Epitopos , Ácidos Graxos Insaturados/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Proteínas Centrais de snRNP/química , Proteínas Centrais de snRNP/metabolismo , Proteína Exportina 1
16.
Proc Natl Acad Sci U S A ; 109(30): 12017-21, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778397

RESUMO

Mutations in the proline/tyrosine-nuclear localization signal (PY-NLS) of the Fused in Sarcoma protein (FUS) cause amyotrophic lateral sclerosis (ALS). Here we report the crystal structure of the FUS PY-NLS bound to its nuclear import receptor Karyopherinß2 (Kapß2; also known as Transportin). The FUS PY-NLS occupies the structurally invariant C-terminal arch of Kapß2, tracing a path similar to that of other characterized PY-NLSs. Unlike other PY-NLSs, which generally bind Kapß2 in fully extended conformations, the FUS peptide is atypical as its central portion forms a 2.5-turn α-helix. The Kapß2-binding epitopes of the FUS PY-NLS consist of an N-terminal PGKM hydrophobic motif, a central arginine-rich α-helix, and a C-terminal PY motif. ALS mutations are found almost exclusively within these epitopes. Each ALS mutation site makes multiple contacts with Kapß2 and mutations of these residues decrease binding affinities for Kapß2 (K(D) for wild-type FUS PY-NLS is 9.5 nM) up to ninefold. Thermodynamic analyses of ALS mutations in the FUS PY-NLS show that the weakening of FUS-Kapß2 binding affinity, the degree of cytoplasmic mislocalization, and ALS disease severity are correlated.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Esclerose Lateral Amiotrófica/genética , Modelos Moleculares , Sinais de Localização Nuclear/genética , Conformação Proteica , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Cristalização , Escherichia coli , Humanos , Sinais de Localização Nuclear/química , Prolina/genética , Proteína FUS de Ligação a RNA/química , Termodinâmica , Tirosina/genética , beta Carioferinas/química , beta Carioferinas/metabolismo
17.
Blood ; 120(23): 4621-34, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23034282

RESUMO

The nuclear export protein XPO1 is overexpressed in cancer, leading to the cytoplasmic mislocalization of multiple tumor suppressor proteins. Existing XPO1-targeting agents lack selectivity and have been associated with significant toxicity. Small molecule selective inhibitors of nuclear export (SINEs) were designed that specifically inhibit XPO1. Genetic experiments and X-ray structures demonstrate that SINE covalently bind to a cysteine residue in the cargo-binding groove of XPO1, thereby inhibiting nuclear export of cargo proteins. The clinical relevance of SINEs was explored in chronic lymphocytic leukemia (CLL), a disease associated with recurrent XPO1 mutations. Evidence is presented that SINEs can restore normal regulation to the majority of the dysregulated pathways in CLL both in vitro and in vivo and induce apoptosis of CLL cells with a favorable therapeutic index, with enhanced killing of genomically high-risk CLL cells that are typically unresponsive to traditional therapies. More importantly, SINE slows disease progression, and improves overall survival in the Eµ-TCL1-SCID mouse model of CLL with minimal weight loss or other toxicities. Together, these findings demonstrate that XPO1 is a valid target in CLL with minimal effects on normal cells and provide a basis for the development of SINEs in CLL and related hematologic malignancies.


Assuntos
Acrilatos/farmacologia , Carioferinas/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/metabolismo , Triazóis/farmacologia , Acrilatos/química , Acrilatos/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cristalografia por Raios X , Humanos , Immunoblotting , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Carioferinas/química , Carioferinas/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos , Camundongos SCID , Camundongos Transgênicos , Microscopia Confocal , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Triazóis/química , Triazóis/metabolismo , Proteína Exportina 1
18.
J Cell Biol ; 223(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767621

RESUMO

In this issue, the discovery by Yang et al. (https://doi.org/10.1083/jcb.202308013) that folded WW domains of YAP1 and other proteins bind to Impα introduces a new class of globular NLS, contrasting with the extensively studied linear NLS motifs. This finding underscores the versatility of importins in recognizing their cargo proteins.


Assuntos
Sinais de Localização Nuclear , Humanos , Sinais de Localização Nuclear/metabolismo , Domínios WW/genética , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/química , Ligação Proteica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/química , Proteínas de Sinalização YAP/metabolismo
19.
bioRxiv ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39211127

RESUMO

Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Unlike the traditional hydrophobic nuclear export signal (NES) utilized by the Exportin-1/XPO1 system, cryogenic-electron microscopy structures reveal that Pho4 presents a novel, phosphorylated 35-residue NES that interacts with the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches, unveiling a previously unknown mechanism of phosphate-specific recognition. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.

20.
bioRxiv ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39416201

RESUMO

The nuclear export receptor Exportin 1 (XPO1/CRM1) is often overexpressed in cancer cells resulting in aberrant localization of many cancer-related protein cargoes. The XPO1 inhibitor and cancer drug selinexor (KPT-330), and its analog KPT-185, block XPO1-cargo binding thereby restoring cargo localization. Selinexor binding induces cullin-RING E3 ubiquitin ligase (CRL) substrate receptor ASB8-mediated XPO1 degradation. Here we reveal the mechanism of inhibitor-XPO1 engagement by CRL5ASB8. Cryogenic electron microscopy (cryo-EM) structures show ASB8 binding to a large surface of selinexor/KPT-185-XPO1 that includes a three-dimensional degron unique to the drug-bound exportin. The structure explains weak XPO1-ASB8 binding in the absence of selinexor/KPT-185 that is unproductive for proteasomal degradation, and the substantial affinity increase upon selinexor/KPT-185 conjugation, which results in CRL5 ASB8 -mediated XPO1 ubiquitination. In contrast to previously characterized small molecule degraders, which all act as molecular glues, selinexor/KPT-185 binds extensively to XPO1 but hardly contacts ASB8. Instead, selinexor/KPT-185 binds XPO1 and stabilizes a unique conformation of the NES/inhibitor-binding groove that binds ASB8. Selinexor/KPT-185 is an allosteric degrader. We have explained how drug-induced protein degradation is mediated by a CRL5 system through an allosteric rather than a molecular glue mechanism, expanding the modes of targeted protein degradation beyond the well-known molecular glues of CRL4.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa