Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311472, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651243

RESUMO

Covalent organic frameworks (COFs), which have layered stacking structures, extended π-conjugation, and periodic frameworks have become a promising class of materials for a wide range of applications. However, their synthetic pathways frequently need high temperatures, enclosed systems under high pressures, an inert atmosphere, and extended reaction time, which restrict their practicality in real-world applications. Herein, the use of gamma irradiation is presented to synthesize highly crystalline COFs at room temperature under an open-air condition within a short time. This is demonstrated that there is no significant difference in crystallinity of COFs by gamma irradiation under air, N2 or Ar atmosphere conditions. Moreover, this approach can successfully fabricate COFs in the vessel with different degrees of transparency or even in a plastic container. Importantly, this strategy is applicable not only to imine linkage of COFs but also effective to the imide linkages of COFs. Most importantly, these COFs demonstrate improved crystallinity, surface area, and thermal stability in comparison to the corresponding materials synthesized via the solvothermal method. Finally, a COF synthesized through gamma irradiation exhibits remarkable photocatalytic activity in promoting the sacrificial hydrogen evolution from water, displaying a more catalytic efficiency compared with that of its solvothermal analogue.

2.
Small ; : e2403176, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949041

RESUMO

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

3.
Small ; 20(6): e2304743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803930

RESUMO

Converting solar energy into hydrogen energy using conjugated polymers (CP) is a promising solution to the energy crisis. Improving water solubility plays one of the critical factors in enhancing the hydrogen evolution rate (HER) of CP photocatalysts. In this study, a novel concept of incorporating hydrophilic side chains to connect the backbones of CPs to improve their HER is proposed. This concept is realized through the polymerization of carbazole units bridged with octane, ethylene glycol, and penta-(ethylene glycol) to form three new side-chain-braided (SCB) CPs: PCz2S-OCt, PCz2S-EG, and PCz2S-PEG. Verified through transient absorption spectra, the enhanced capability of PCz2S-PEG for ultrafast electron transfer and reduced recombination effects has been demonstrated. Small- and wide-angle X-ray scattering (SAXS/WAXS) analyses reveal that these three SCB-CPs form cross-linking networks with different mass fractal dimensions (f) in aqueous solution. With the lowest f value of 2.64 and improved water/polymer interfaces, PCz2S-PEG demonstrates the best HER, reaching up to 126.9 µmol h-1 in pure water-based photocatalytic solution. Moreover, PCz2S-PEG exhibits comparable performance in seawater-based photocatalytic solution under natural sunlight. In situ SAXS analysis further reveals nucleation-dominated generation of hydrogen nanoclusters with a size of ≈1.5 nm in the HER of PCz2S-PEG under light illumination.

4.
Angew Chem Int Ed Engl ; : e202407702, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751355

RESUMO

The current bottleneck in the development of efficient photocatalysts for hydrogen evolution is the limited availability of high-performance acceptor units. Over the past nine years, dibenzo[b,d]thiophene sulfone (DBS) has been the preferred choice for the acceptor unit. Despite extensive exploration of alternative structures as potential replacements for DBS, a superior substitute remains elusive. In this study, a symmetry-breaking strategy was employed on DBS to develop a novel acceptor unit, BBTT-1SO. The asymmetric structure of BBTT-1SO proved beneficial for increasing multiple moment and polarizability. BBTT-1SO-containing polymers showed higher efficiencies for hydrogen evolution than their DBS-containing counterparts by up to 166 %. PBBTT-1SO exhibited an excellent hydrogen evolution rate (HER) of 222.03 mmol g-1 h-1 and an apparent quantum yield of 27.5 % at 500 nm. Transient spectroscopic studies indicated that the BBTT-1SO-based polymers facilitated electron polaron formation, which explains their superior HERs. PBBTT-1SO also showed 14 % higher HER in natural seawater splitting than that in deionized water splitting. Molecular dynamics simulations highlighted the enhanced water-PBBTT-1SO polymer interactions in salt-containing solutions. This study presents a pioneering example of a substitute acceptor unit for DBS in the construction of high-performance photocatalysts for hydrogen evolution.

5.
Small ; 19(40): e2303391, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37267938

RESUMO

A hybrid composite of organic-inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO2 ) is developed for visible-light-driven H2 production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO2 occurs leading to a quantum leap in the H2 production yield (18 578 µmol g-1 h-1 ) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO2 , 11 321 µmol g-1 h-1 ). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations. With robust process control via industrially applicable methods, it is anticipated that the findings and proposed methodologies can accelerate the development of high-performance eco-friendly photocatalytic hydrogen production technologies.

6.
Small ; 19(42): e2302682, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322304

RESUMO

Conjugated polymers (CPs) have recently gained increasing attention as photocatalysts for sunlight-driven hydrogen evolution. However, they suffer from insufficient electron output sites and poor solubility in organic solvents, severely limiting their photocatalytic performance and applicability. Herein, solution-processable all-acceptor (A1 -A2 )-type CPs based on sulfide-oxidized ladder-type heteroarene are synthesized. A1 -A2 -type CPs showed upsurging efficiency improvements by two to three orders of magnitude, compared to their donor-acceptor -type CP counterparts. Furthermore, by seawater splitting, PBDTTTSOS exhibited an apparent quantum yield of 18.9% to 14.8% at 500 to 550 nm. More importantly, PBDTTTSOS achieved an excellent hydrogen evolution rate of 35.7 mmol h-1  g-1 and 150.7 mmol h-1  m-2 in the thin-film state, which is among the highest efficiencies in thin film polymer photocatalysts to date. This work provides a novel strategy for designing polymer photocatalysts with high efficiency and broad applicability.

7.
Nano Lett ; 15(11): 7587-95, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26496513

RESUMO

Due to the lack of a bandgap, applications of graphene require special device structures and engineering strategies to enable semiconducting characteristics at room temperature. To this end, graphene-based vertical field-effect transistors (VFETs) are emerging as one of the most promising candidates. Previous work attributed the current modulation primarily to gate-modulated graphene-semiconductor Schottky barrier. Here, we report the first experimental evidence that the partially screened field effect and selective carrier injection through graphene dominate the electronic transport at the organic semiconductor/graphene heterointerface. The new mechanistic insight allows us to rationally design graphene VFETs. Flexible organic/graphene VFETs with bending radius <1 mm and the output current per unit layout area equivalent to that of the best oxide planar FETs can be achieved. We suggest driving organic light emitting diodes with such VFETs as a promising application.

8.
J Org Chem ; 79(1): 267-74, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24295385

RESUMO

A short synthesis of unsubstituted chrysene is described to provide a cheap source of this compound. This chrysene was used to prepare 3,6,9,12-tetrabromochrysene, which was subsequently transformed into various 3,6,9,12-tetrasubstituted chrysenes bearing four aryl, alkynyl, or amino groups by means of the Suzuki, Sonogashira, or Buchwald-Hartwig coupling reaction, respectively. These substituents result in large bathochromic shifts in the chrysene absorption and emission spectra. These new chrysene derivatives show blue fluorescent emission (401-471 nm) with high quantum yields (0.44-0.87). DFT calculations on these chrysenes rationalize well the substituent effects on their HOMO and LUMO energy levels. One representative chrysene (6g) was used as a blue fluorescent emitter in an OLED device that showed an outstanding external quantum efficiency (η = 6.31%) with blue emission [CIE (x, y) = (0.13, 0.20)] and a low turn-on voltage (3.0 V).

9.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267492

RESUMO

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

10.
Environ Sci Pollut Res Int ; 30(12): 32371-32382, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36460890

RESUMO

The removal of heavy metal ions from wastewater has attracted considerable interest because of their toxicity. Adsorption is one of the most promising methods for the removal of heavy metal ions due to its simplicity and effectiveness. Recently, covalent organic frameworks (COFs) have become promising adsorbents for effective wastewater remediation. However, many building blocks have been developed, and the design of COFs with high adsorption efficiency remains a challenge. Here, a covalent organic framework (DHTP-TPB COF) decorated with hydroxyl groups was developed for the efficient removal of Pb2+ ions. The DHTP-TPB COF showed excellent performance in adsorbing Pb2+ from aqueous solution. More importantly, DHTP-TPB COF exhibited high selectivity for Pb2+ compared to other competing ions, capturing Pb2+ ions with a removal efficiency of over 96% at pH 4. The results show that the DHTP-TPB COF exhibits excellent adsorption capacity at pH 4 of up to 154.3 mg/g for Pb2+ ions; the value is comparable to many previously reported COFs. Moreover, the adsorbed Pb2+ ions could be easily eluted with a 0.1 M EDTA solution, and the DHTP-TPB COF can be reused for more than five adsorption-desorption cycles without significant loss of adsorption capacity. Moreover, the adsorption mechanism was revealed using XPS analysis, indicating the formation of strong coordination-bonding interactions between hydroxyl and Pb2+ ions. Therefore, the DHTP-TPB COF prepared herein has high potential for the treatment of Pb2+-contaminated wastewater and is promising for the adsorption of Pb2+ ions in practical applications.


Assuntos
Estruturas Metalorgânicas , Metais Pesados , Poluentes Químicos da Água , Chumbo , Adsorção , Águas Residuárias , Poluentes Químicos da Água/análise , Metais Pesados/análise , Íons
11.
Polymers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616530

RESUMO

In this study, we used effective and one-pot Heck coupling reactions under moderate reaction conditions to construct two new hybrid porous polymers (named OVS-P-TPA and OVS-P-F HPPs) with high yield, based on silsesquioxane cage nanoparticles through the reaction of octavinylsilsesquioxane (OVS) with different brominated pyrene (P-Br4), triphenylamine (TPA-Br3), and fluorene (F-Br2) as co-monomer units. The successful syntheses of both OVS-HPPs were tested using various instruments, such as X-ray photoelectron (XPS), solid-state 13C NMR, and Fourier transform infrared spectroscopy (FTIR) analyses. All spectroscopic data confirmed the successful incorporation and linkage of P, TPA, and F units into the POSS cage in order to form porous OVS-HPP materials. In addition, the thermogravimetric analysis (TGA) and N2 adsorption analyses revealed the thermal stabilities of OVS-P-F HPP (Td10 = 444 °C; char yield: 79 wt%), with a significant specific surface area of 375 m2 g-1 and a large pore volume of 0.69 cm3 g-1. According to electrochemical three-electrode performance, the OVS-P-F HPP precursor displayed superior capacitances of 292 F g-1 with a capacity retention of 99.8% compared to OVS-P-TPA HPP material. Interestingly, the OVS-P-TPA HPP showed a promising HER value of 701.9 µmol g-1 h-1, which is more than 12 times higher than that of OVS-P-F HPP (56.6 µmol g-1 h-1), based on photocatalytic experimental results.

12.
Nat Commun ; 13(1): 5460, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115857

RESUMO

Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m-2 h-1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis.

13.
Chem Commun (Camb) ; 57(90): 11968-11971, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34704990

RESUMO

We report the synthesis of two carbazole-thiophene-based conjugated microporous polymers (Cz-3Th and Cz-4Th CMPs) with different degrees of planarity for photocatalytic hydrogen evolution from water. Depending upon the building linker's planarity, we found that the porous structure, hydrogen-evolution rate, and photocatalytic stability of the resultant CMPs varied.

14.
ACS Appl Mater Interfaces ; 13(47): 56554-56565, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783531

RESUMO

Organic semiconducting polymers exhibited promising photocatalytic behavior for hydrogen (H2) evolution, especially when prepared in the form of polymer dots (Pdots). However, the Pdot structures were formed using common nonconjugated amphiphilic polymers, which have a negative effect on charge transfer between photocatalysts and reactants and are unable to participate in the photocatalytic reaction. This study presents a new strategy for constructing binary Pdot photocatalysts by replacing the nonconjugated amphiphilic polymer typically employed in the preparation of polymer nanoparticles (Pdots) with a low-molecular-weight conjugated polyelectrolyte. The as-prepared polyelectrolyte/hydrophobic polymer-based binary Pdots truly enhance the electron transfer between the Pt cocatalyst and the polymer photocatalyst with good water dispersibility. Moreover, unlike the nonconjugated amphiphilic polymer, the photophysics and mechanism of this photocatalytic system through time-correlated single-photon counting (TCSPC) and transient absorption (TA) measurements confirmed the Förster resonance energy transfer (FRET) between the polyelectrolyte as a donor and the hydrophobic polymer as an acceptor. As a result, the designated binary Pdot photocatalysts significantly enhanced the hydrogen evolution rate (HER) of 43 900 µmol g-1 h-1 (63.5 µmol h-1, at 420 nm) for PTTPA/PFTBTA Pdots under visible-light irradiation.

15.
ACS Cent Sci ; 1(2): 68-76, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27162953

RESUMO

Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m(2) g(-1)), large pore volume (2.26 cm(-3)), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.

16.
Nat Commun ; 6: 8011, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26300307

RESUMO

Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.


Assuntos
Cor , Teste de Materiais , Fenômenos Mecânicos , Pele , Estresse Mecânico , Biomimética/instrumentação , Equipamentos e Provisões Elétricas , Tato
17.
Science ; 350(6258): 313-6, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472906

RESUMO

Human skin relies on cutaneous receptors that output digital signals for tactile sensing in which the intensity of stimulation is converted to a series of voltage pulses. We present a power-efficient skin-inspired mechanoreceptor with a flexible organic transistor circuit that transduces pressure into digital frequency signals directly. The output frequency ranges between 0 and 200 hertz, with a sublinear response to increasing force stimuli that mimics slow-adapting skin mechanoreceptors. The output of the sensors was further used to stimulate optogenetically engineered mouse somatosensory neurons of mouse cortex in vitro, achieving stimulated pulses in accordance with pressure levels. This work represents a step toward the design and use of large-area organic electronic skins with neural-integrated touch feedback for replacement limbs.


Assuntos
Mecanorreceptores , Próteses Neurais , Pele/inervação , Tato , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Mãos/anatomia & histologia , Mãos/inervação , Mãos/fisiologia , Humanos , Técnicas In Vitro , Camundongos , Optogenética , Pressão , Transistores Eletrônicos
18.
ACS Appl Mater Interfaces ; 5(13): 6168-75, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23751443

RESUMO

A new light blue complex (fmoppy)2Ir(tfpypz) [bis(4'-fluoro-6'-methoxylphenyl pyridinato)-iridium(III)-3-(trifluoromethyl)-5-(pyridin-2-yl)-1,2,4-triazolate] and a new orange complex (dpiq)2Ir(acac) [bis(3,4-diphenylisoquinoline)-iridium(III)-acetylacetonate] were synthesized. These two complexes were used as the dopants for the fabrication of two-element white phosphorescent devices. Via the introduction of a thin energy-harvesting layer (EHL) to harvest the extra energy and exciton from the emission zone, highly efficient two-element white devices with excellent color stability were created. One of the best devices shows yellow-white color emission with an extremely high external quantum efficiency (EQE) of 21.5% and a current efficiency of 68.8 cd/A. The other device gave a pure white emission with an external quantum efficiency of 19.2% and a current efficiency of 53.2 cd/A. At a high brightness of 1000 cd/m(2), the EQE still remains as high as 18.9 and 17.2%. With a brightness of 1000-10000 cd/m(2), the CIE coordinates of these two devices shift by only (0.02, ≤0.01). The white phosphorescent devices with the EHL showed much higher efficiency and better color stability than the one without the EHL.

19.
Adv Mater ; 24(43): 5867-71, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22915130

RESUMO

Two new n-type diimidazolylstilbenes as blue-fluorescent dopant materials are synthesized and characterized. Blue-fluorescent devices based on these two compounds as the dopants reveal outstanding external quantum efficiencies (EQEs) (current efficiencies) of 7.8% (10.4 cd A(-1) ) and 7.7% (7.9 cd A(-1) ) with Commission internationale de l'Eclairage (CIE) co-ordinates of (0.14, 0.15) and (0.15, 0.11).


Assuntos
Medições Luminescentes/instrumentação , Estilbenos/química , Corantes Fluorescentes/química , Imidazóis/química , Teoria Quântica , Estilbenos/síntese química
20.
Chem Commun (Camb) ; 47(31): 8865-7, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21743890

RESUMO

Three deep-blue fluorescent 9,10-bis(4-tert-butylphenyl)phenanthrenes with diphenyl, -naphthyl, and -pyrenyl moieties at C3 and C6 positions were synthesized and used as the host for doped blue fluorescent devices; one of these devices reveals excellent external quantum efficiency of 7.7% and current efficiency of 9.8 cd A(-1) with low efficiency roll-off, deep-blue color coordinates (0.14, 0.14) and long operational lifetime.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa