RESUMO
The effective elimination of xenobiotic pollutants from the environment can be achieved by efficient degradation by microorganisms even in the presence of sugars or organic acids. Soil isolate Pseudomonas putida CSV86 displays a unique ability to utilize aromatic compounds prior to glucose. The draft genome and transcription analyses revealed that glucose uptake and benzoate transport and metabolism genes are clustered at the glc and ben loci, respectively, as two distinct operons. When grown on glucose plus benzoate, CSV86 displayed significantly higher expression of the ben locus in the first log phase and of the glc locus in the second log phase. Kinetics of substrate uptake and metabolism matched the transcription profiles. The inability of succinate to suppress benzoate transport and metabolism resulted in coutilization of succinate and benzoate. When challenged with succinate or benzoate, glucose-grown cells showed rapid reduction in glc locus transcription, glucose transport, and metabolic activity, with succinate being more effective at the functional level. Benzoate and succinate failed to interact with or inhibit the activities of glucose transport components or metabolic enzymes. The data suggest that succinate and benzoate suppress glucose transport and metabolism at the transcription level, enabling P. putida CSV86 to preferentially metabolize benzoate. This strain thus has the potential to be an ideal host to engineer diverse metabolic pathways for efficient bioremediation.IMPORTANCEPseudomonas strains play an important role in carbon cycling in the environment and display a hierarchy in carbon utilization: organic acids first, followed by glucose, and aromatic substrates last. This limits their exploitation for bioremediation. This study demonstrates the substrate-dependent modulation of ben and glc operons in Pseudomonas putida CSV86, wherein benzoate suppresses glucose transport and metabolism at the transcription level, leading to preferential utilization of benzoate over glucose. Interestingly, succinate and benzoate are cometabolized. These properties are unique to this strain compared to other pseudomonads and open up avenues to unravel novel regulatory processes. Strain CSV86 can serve as an ideal host to engineer and facilitate efficient removal of recalcitrant pollutants even in the presence of simpler carbon sources.
Assuntos
Proteínas de Bactérias/genética , Benzoatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Pseudomonas putida/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Família Multigênica , Óperon , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Ácido Succínico/metabolismo , Transcrição GênicaRESUMO
BACKGROUND: Studies on human intraocular tuberculosis (IOTB) are extremely challenging. For understanding the pathogenesis of IOTB, it is important to investigate the mycobacterial transcriptional changes in ocular environment. METHODS: Mice were challenged intravenously with Mycobacterium tuberculosis H37Rv and at 45 days post-infection, experimental IOTB was confirmed based on bacteriological and molecular assays. M. tuberculosis transcriptome was analyzed in the infected eyes using microarray technology. The identified M. tuberculosis signature genes were further validated and investigated in human IOTB samples using real-time polymerase chain reaction. RESULTS: Following intravenous challenge with M. tuberculosis, 45% (5/12) mice showed bacilli in the eyes with positivity for M. tuberculosis ribonucleic acid in 100% (12/12), thus confirming the paucibacillary nature of IOTB similar to human IOTB. M. tuberculosis transcriptome in these infected eyes showed significant upregulation of 12 M. tuberculosis genes and five of these transcripts (Rv0962c, Rv0984, Rv2612c, Rv0974c and Rv0971c) were also identified in human clinically confirmed cases of IOTB. CONCLUSIONS: Differentially expressed mycobacterial genes identified in an intravenously challenged paucibacillary mouse IOTB model and presence of these transcripts in human IOTB samples highlight the possible role of these genes for survival of M. tuberculosis in the ocular environment, thus contributing to pathogenesis of IOTB.
Assuntos
Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Transcriptoma , Tuberculose Ocular/microbiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Análise em Microsséries , Mycobacterium tuberculosis/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Virulência/genéticaRESUMO
Pseudomonas putida strain CSV86 metabolizes variety of aromatic compounds as the sole carbon source. Genome analysis revealed the presence of genes encoding putative transporters for benzoate, p-hydroxybenzoate, phenylacetate, p-hydroxyphenylacetate and vanillate. Bioinformatic analysis revealed that benzoate transport and metabolism genes are clustered at the ben locus as benK-catA-benE-benF. Protein topology prediction suggests that BenK (aromatic acid-H+ symporter of major facilitator superfamily) has 12 transmembrane α-helices with the conserved motif LADRXGRKX in loop 2, while BenE (benzoate-H+ symporter protein) has 11 predicted transmembrane α-helices. benF and catA encode benzoate specific porin, OprD and catechol 1,2-dioxygenase, respectively. Biochemical studies suggest that benzoate was transported by an inducible and active process. Inhibition (90%-100%) in the presence of dinitrophenol suggests that the energy for the transport process is derived from the proton motive force. The maximum rate of benzoate transport was 484 pmole min-1 mg-1 cells with an affinity constant, Kmof 4.5 µM. Transcriptional analysis of the benzoate and glucose-grown cells showed inducible expression of benF, benK and benE, suggesting that besides outer membrane porin, both inner membrane transporters probably contribute for the benzoate transport in P. putida strain CSV86.
Assuntos
Benzoatos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Transporte Biológico , Biologia Computacional , Dinitrofenóis/farmacologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glucose/farmacologia , Cinética , Transportadores de Ânions Orgânicos/genética , Força Próton-Motriz , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/crescimento & desenvolvimentoRESUMO
Soil isolates Pseudomonas putida CSV86, Pseudomonas aeruginosa PP4 and Pseudomonas sp. C5pp degrade naphthalene, phthalate isomers and carbaryl, respectively. Strain CSV86 displayed a diauxic growth pattern on phenylpropanoid compounds (veratraldehyde, ferulic acid, vanillin or vanillic acid) plus glucose with a distinct second lag-phase. The glucose concentration in the medium remained constant with higher cell respiration rates on aromatics and maximum protocatechuate 3,4-dioxygenase activity in the first log-phase, which gradually decreased in the second log-phase with concomitant depletion of the glucose. In strains PP4 and C5pp, growth profile and metabolic studies suggest that glucose is utilized in the first log-phase with the repression of utilization of aromatics (phthalate or carbaryl). All three strains utilize benzoate via the catechol 'ortho' ring-cleavage pathway. On benzoate plus glucose, strain CSV86 showed preference for benzoate over glucose in contrast to strains PP4 and C5pp. Additionally, organic acids like succinate were preferred over aromatics in strains PP4 and C5pp, whereas strain CSV86 co-metabolizes them. Preferential utilization of aromatics over glucose and co-metabolism of organic acids and aromatics are found to be unique properties of P. putida CSV86 as compared with strains PP4 and C5pp and this property of strain CSV86 can be exploited for effective bioremediation.