RESUMO
BACKGROUND: The aim of our study is to determine the incidence, timing, and risk factors for cerebral vasculopathy after cranial proton and photon radiation for pediatric brain tumors. METHODS: We performed a single-institution retrospective review of a cohort of children treated with proton radiation for brain tumors. MRA and/or MRI were reviewed for evidence of cerebral vascular stenosis and infarcts. Twenty-one similar studies (17 photon, 4 proton) were identified by systematic literature review. RESULTS: For 81 patients with median follow-up of 3 years, the rates of overall and severe vasculopathy were 9.9% and 6.2% respectively, occurring a median of 2 years post radiation. Dose to optic chiasm greater than 45 Gy and suprasellar location were significant risk factors. Results were consistent with 4 prior proton studies (752 patients) that reported incidence of 5% to 6.7%, 1.5 to 3 years post radiation. With significantly longer follow-up (3.7-19 years), 9 studies (1108 patients) with traditional photon radiation reported a higher rate (6.3%-20%) and longer time to vasculopathy (2-28 years). Significant risk factors were neurofibromatosis type 1 (NF-1; rate 7.6%-60%) and suprasellar tumors (9%-20%). In 10 studies with photon radiation (1708 patients), the stroke rate was 2% to 18.8% (2.3-24 years post radiation). CONCLUSIONS: Childhood brain tumor survivors need screening for vasculopathy after cranial radiation, especially with higher dose to optic chiasm, NF-1, and suprasellar tumors. Prospective studies are needed to identify risk groups, and ideal modality and timing, for screening of this toxicity.
RESUMO
BACKGROUND: Stable access is essential for successful intracranial interventions. Quantifying variations in extracranial carotid arteries may help in the selection and development of access catheters. This study describes the vascular dimensions from the aortic arch to the skull base. METHODS: CT angiography analysis was performed on 100 patients. The lengths, diameters, and tortuosity of the common carotid artery (CCA) and internal carotid artery (ICA) were measured from the aortic arch to the skull base. RESULTS: The mean±SD length of the carotid artery from the aortic arch to the skull base was 22.2±2.2 cm for the right side and 20.8±1.9 cm for the left side (p<0.0001). The length of the right CCA was 13.6±1.2 cm and the length of the left CCA was 12.4±1.4 cm (p<0.0001). The length of the right ICA was 8.6±1.4 cm compared with 8.4±1.4 cm for the left ICA (p=0.3). The ICA length in men and women was 8.9±1.3 cm and 8.2±1.3 cm, respectively (p=0.0001), and the CCA length in men and women was 13.6±1.5 cm and 12.3±1.6 cm, respectively (p<0.0001). The lengths of the CCA and ICA in patients aged ≥60â years were 13.3±1.7 cm and 8.9±1.5 cm, respectively compared with 12.8±1.7 cm and 8.2±1.1 cm, respectively, for patients aged <60â years (p=0.04 for CCA, p=0.0002 for ICA). Tortuosity of the CCA and ICA was 1.2±0.2 and 1.3±0.1, respectively, in patients aged ≥60â years compared with 1.1±0.1 for both the ICA and CCA in patients aged <60â years (p<0.0001 for both). There was a consistent ratio of CCA/ICA length of 1.6±0.3 on the right and 1.5±0.3 on the left (p<0.0001). The arterial diameters did not show any significant difference. CONCLUSIONS: The distance from the aortic arch to the skull base is longer on the right than on the left side. Both the CCA and ICA are longer in men and in patients aged ≥60â years. The tortuosity of both segments significantly increases with age.