Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 99: 21-27, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183698

RESUMO

Antibiotics are poorly metabolized, and can enter the environment via human waste streams, agricultural run-off and pharmaceutical effluent. We consequently expect to see a concentration gradient of antibiotic compounds radiating from areas of human population. Such antibiotics should be thought of as pollutants, as they can accumulate, and have biological effects. These antibiotic pollutants can increase rates of mutation and lateral transfer events, and continue to exert selection pressure even at sub-inhibitory concentrations. Here, we conducted a literature survey on environmental concentrations of antibiotics. We collated 887 data points from 40 peer-reviewed papers. We then determined whether these concentrations were biologically relevant by comparing them to their minimum selective concentrations, usually defined as between 1/4 and 1/230 of the minimum inhibitory concentration. Environmental concentrations of antibiotics surveyed often fall into this range. In general, the antibiotic concentrations recorded in aquatic and sediment samples were similar. These findings indicate that environmental concentrations of antibiotics are likely to be influencing microbial ecology, and to be driving the selection of antibiotic resistant bacteria.


Assuntos
Antibacterianos , Poluentes Ambientais , Bactérias , Humanos , Inquéritos e Questionários
2.
ACS Synth Biol ; 11(8): 2548-2563, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35848307

RESUMO

The global expansion of biomanufacturing is currently limited by the availability of sugar-based microbial feedstocks, which require farmland for cultivation and therefore cannot support large increases in production without impacting the human food supply. One-carbon feedstocks, such as methanol, present an enticing alternative to sugar because they can be produced independently of arable farmland from organic waste, atmospheric carbon dioxide, and hydrocarbons such as biomethane, natural gas, and coal. The development of efficient industrial microorganisms that can convert one-carbon feedstocks into valuable products is an ongoing challenge. This review discusses progress in the field of synthetic methylotrophy with a focus on how it pertains to the important industrial yeast, Saccharomyces cerevisiae. Recent insights generated from engineering synthetic methylotrophic xylulose- and ribulose-monophosphate cycles, reductive glycine pathways, and adaptive laboratory evolution studies are critically assessed to generate novel strategies for the future engineering of methylotrophy in S. cerevisiae.


Assuntos
Metanol , Saccharomyces cerevisiae , Glicina/metabolismo , Humanos , Engenharia Metabólica , Metanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa