RESUMO
Low-intensity pulsed ultrasound (LIPUS) is a developing technology, which has been proven to improve fracture healing process with minimal thermal effects. This noninvasive treatment accelerates bone formation through various molecular, biological, and biomechanical interactions with tissues and cells. Although LIPUS treatment has shown beneficial effects on different bone fracture locations, only very few studies have examined its effects on deeper bones. This study provides an overview on therapeutic ultrasound for fractured bones, possible mechanisms of action, clinical evidences, current limitations, and its future prospects.
Assuntos
Fraturas Ósseas , Terapia por Ultrassom , Osso e Ossos , Consolidação da Fratura , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/terapia , Humanos , Ondas UltrassônicasRESUMO
Aims: Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods: We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results: Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion: We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males.
RESUMO
AIMS: There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. METHODS: A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. RESULTS: Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. CONCLUSION: The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465-476.
RESUMO
Sarcopenia is highly prevalent in fragility fracture patients and is associated with delayed healing. In this study, we investigated the effect of low-magnitude high-frequency vibration (LMHFV) on osteoporotic fracture with sarcopenia and the potential role of myostatin. Osteoporotic fractures created in sarcopenic SAMP8, non-sarcopenic SAMR1 were randomized to control or LMHFV (SAMP8, SAMR1, SAMP8-V, or SAMR1-V) groups. Healing and myostatin expression were evaluated at 2, 4, and 6 weeks post-fracture. In vitro, conditioned-media were collected from myofibers isolated from aged and young SAMP8 or C2C12 myoblasts with or without LMHFV. Osteoblastic MC3T3-E1 under osteogenic differentiation were treated with plain or conditioned-medium (±myostatin propeptide). LMHFV significantly enhanced callus formation was in non-sarcopenic SAMR1 mice; but the enhancement effect was not significant in SAMP8 mice at week 2. Myostatin expressions in callus and biceps femoris of SAMP8 group were significantly higher all groups with significant negative correlation with callus size (R2 = 0.7256; p = 0.0004). Mechanical properties (week 4) and callus remodeling (week 6) were inferior in SAMP8 versus SAMR1 and were significantly enhanced by LMHFV. Alkaline Phosphatase (ALP) and Runx2 expression of MC3T3-E1 was lower in aged myofiber compared with young, but upregulated by LMHFV or myostatin inhibition; also confirmed with C2C12. LMHFV enhanced early callus formation, microarchitecture, callus remodeling and mechanical properties of fracture healing in both SAMP8 and SAMR1; however, more effective in non-sarcopenic SAMR1 mice. Impaired fracture healing in sarcopenic SAMP8 mice is attributed by elevated myostatin expression in callus and muscle, which correlated negatively with callus formation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:277-287, 2020.
Assuntos
Consolidação da Fratura , Miostatina/metabolismo , Fraturas por Osteoporose/terapia , Sarcopenia/terapia , Vibração/uso terapêutico , Células 3T3 , Animais , Fenômenos Biomecânicos , Calo Ósseo/metabolismo , Camundongos , Fraturas por Osteoporose/metabolismo , Distribuição Aleatória , Sarcopenia/metabolismoRESUMO
A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article: Bone Joint Res 2020;9(7):368-385.
RESUMO
OBJECTIVE: Osteosynthesis-associated infection is a challenging complication post fracture fixation, burdening the patients and the orthopaedic surgeons alike. A clinically relevant animal model is critical in devising new therapeutic strategies. Our aim was to perform a systematic review to evaluate existing preclinical models and identify their applications in aspects of animal selection, bacterial induction, fracture fixation and complications. METHODS: A systematic literature research was conducted in PubMed and Embase up to February 2020. A total of 31 studies were included. Information on the animal, bacterial induction, fracture fixation, healing result and complications were extracted. RESULTS: Animals selected included murine (23), rabbit (6), ewe (1) and goat (1). Larger animals had enabled the use of human-sized implant, however small animals were more economical and easier in handling. Staphylococcus aureus (S. aureus) was the most frequently chosen bacteria for induction. Bacterial inoculation dose ranged from 102-8 âCFU. Consistent and replicable infections were observed from 104 âCFU in general. Methods of inoculation included injections of bacterial suspension (20), placement of foreign objects (8) and pretreatment of implants with established biofilm (3). Intramedullary implants (13), plates and screws (18) were used in most models. Radiological (29) and histological evaluations (24) in osseous healing were performed. Complications such as instability of fracture fixation (7), unexpected surgical death (5), sepsis (1) and persistent lameness (1) were encountered. CONCLUSION: The most common animal model is the S. aureus infected open fracture internally fixated. Replicable infections were mainly from 104 âCFU of bacteria. However, with the increase in antibiotic resistance, future directions should explore polymicrobial and antibiotic resistant strains, as these will no doubt play a major role in bone infection. Currently, there is also a lack of osteoporotic bone infection models and the pathophysiology is unexplored, which would be important with our aging population. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This systematic review provides an updated overview and compares the currently available animal models of osteosynthesis-associated infections. A discussion on future research directions and suggestion of animal model settings were made, which is expected to advance the research in this field.
RESUMO
The intention of the current work is to assess new bone formation and degradation behavior of nanocrystalline hydroxyapatite with (HA/col-1) or without collagen-type I (HA) in osteoporotic metaphyseal bone defects in goats. After ovariectomy and special low-calcium diet for three months, 3 drill hole defects in the vertebrae of L3, L4, L5, 4 drill hole defects in the right and left iliac crest and 1 drill hole defect at the distal femur were created in three Chinese mountain goats with a total of 24 defects. The defects were either filled with one of the biomaterials or left empty (empty defect control group). After 42 days, the animals were euthanized and the samples were assessed for new bone formation using high-resolution peripheral quantitative computed tomography (HR-pQCT) and histomorphometry with 2 regions of interest. Detail histology, enzymehistochemistry and immunohistochemistry as well as connexin-43 in situ hybridization and transmission electron microscopy were carried out for evaluation of degradation behavior of the materials and cellular responses of the surrounding tissue in respect to the implants. HR-pQCT showed the highest BV/TV ratio (p = 0.008) and smallest trabecular spacing (p = 0.005) for HA compared to the other groups in the region of interest at the interface with 1mm distance to the initially created defect. The HA/col-1 yielded the highest connectivity density (Conn.D) (p = 0.034) and the highest number of trabeculae (Tb.N) (p = 0.002) compared to the HA and the control group. Histomorphometric analysis for the core region of the initially created defect revealed a statistically higher new bone formation in the HA (p = 0.001) and HA/col-1 group (p = 0.001) compared to the empty defect group including all defect sites. This result was confirmed for site specific analysis with significant higher new bone formation for the HA group for vertebral defects compared to the empty defect group (p = 0.029). For the interface region, no statistically significant differences were found between the three groups (p = 0.08). Histology revealed a good biocompatibility without inflammatory reaction for the HA- and HA/col-1 implants with a higher fragmentation of the HA-implant compared to the HA/col-1 biomaterial and formation of new bone in the region between the biomaterial fragments by osteoblasts. Fragmentation was shown by transmission electron microscopy to be caused by multinuclear osteoclast-like cells with degradation of the implant via intracellular incorporation of degraded implant material particles. In conclusion, both nanoparticulate HA with and without collagen type-1 showed better new bone formation compared to untreated drill hole defects in metaphyseal regions of this osteoporotic Chinese mountain goat model with good biocompatibility.