Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(48): 17318-17332, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995326

RESUMO

Stabilizing biomolecules under ambient conditions can be extremely beneficial for various biological applications. In this context, the utilization of ionic liquids (ILs) in enhancing the stability and preservation of nucleic acids in aqueous solutions is found to be promising. While the role of the cationic moiety of ILs in the said event has been thoroughly explored, the importance of the anionic moiety in ILs, if any, is rather poorly understood. Herein, we examine the function of anions of ILs in nucleic acid stabilization by examining the stability and structure of calf thymus-DNA (ct-DNA) in the presence of various ILs composed of a common 1-ethyl-3-methylimidazolium cations (Emim+) and different anions, which includes Cl-, Br-, NO3-, Ac-,HSO4-and BF4- by employing various spectroscopic techniques as well as Molecular Dynamics (MD) simulation studies. Analysis of our data suggests that the chemical nature of anions including polarity, basicity, and hydrophilicity become an important factor in the overall DNA-IL interaction event. At lower concentrations, the interplay of intermolecular interaction between the IL anions with their respective cations and the solvent molecules becomes a very crucial factor in inducing their stabilizing effect on ct-DNA. However, at higher concentrations of ILs, the ct-DNA stabilization is additionally governed by specific-ion effect. MD simulation studies have also provided valuable insights into molecular-level understanding of the DNA-IL interaction event. Overall, the present study clearly demonstrated that along with the cationic moiety of ILs, the anions of ILs can play a significant role in deciding the stability of duplex DNA in aqueous solution. The findings of this study are expected to enhance our knowledge on understanding of IL-DNA interactions in a better manner and will be helpful in designing optimized IL systems for nucleic acid based applications.


Assuntos
Líquidos Iônicos , Ácidos Nucleicos , Líquidos Iônicos/química , Ânions/química , Água/química , Cátions/química , DNA
2.
Proteins ; 90(12): 2103-2115, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35869787

RESUMO

Knowledge of the interaction of the tau fibrils with the cell membrane is critical for the understanding of the underlying tauopathy pathogenesis. Lipid composition is found to affect the conformational ensemble of the tau fibrils. Using coarse-grained and all-atom molecular dynamics simulations we have shown the effect of the lipid composition in modulating the tau structure and dynamics. Molecular dynamics simulations show that tau proteins interact differentially with the zwitterionic compared to the charged lipid membranes. The negatively charged POPG lipid membranes increase the binding propensity of the tau fibrils. The addition of cholesterol is also found to modify the tau binding to the membrane. The binding of tau fibril leads to the concomitant loss of the ß-sheet structures across the tau residues alongside the change in the membrane properties (like area per lipid, bilayer thickness, and order parameter of the lipid tails) over the pure bilayers.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Conformação Molecular , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa