Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 69(12): 2828-2844, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34378239

RESUMO

Mobilization of astrocyte glycogen is key for processes such as synaptic plasticity and memory formation but the link between neuronal activity and glycogen breakdown is not fully known. Activation of cytosolic soluble adenylyl cyclase (sAC) in astrocytes has been suggested to link neuronal depolarization and glycogen breakdown partly based on experiments employing pharmacological inhibition of sAC. However, several studies have revealed that sAC located within mitochondria is a central regulator of respiration and oxidative phosphorylation. Thus, pharmacological sAC inhibition is likely to affect both cytosolic and mitochondrial sAC and if bioenergetic readouts are studied, the observed effects are likely to stem from inhibition of mitochondrial rather than cytosolic sAC. Here, we report that a pharmacologically induced inhibition of sAC activity lowers mitochondrial respiration, induces phosphorylation of the metabolic master switch AMP-activated protein kinase (AMPK), and decreases glycogen stores in cultured primary murine astrocytes. From these data and our discussion of the literature, mitochondrial sAC emerges as a key regulator of astrocyte bioenergetics. Lastly, we discuss the challenges of investigating the functional and metabolic roles of cytosolic versus mitochondrial sAC in astrocytes employing the currently available pharmacological tool compounds.


Assuntos
Proteínas Quinases Ativadas por AMP , Inibidores de Adenilil Ciclases , Adenilil Ciclases , Astrócitos , Glicogênio , Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Ativação Enzimática/efeitos dos fármacos , Glicogênio/metabolismo , Camundongos , Mitocôndrias/enzimologia , Fosforilação Oxidativa
2.
Neurobiol Dis ; 148: 105198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242587

RESUMO

Alzheimer's disease (AD) leads to cerebral accumulation of insoluble amyloid-ß plaques causing synaptic dysfunction and neuronal death. Neurons rely on astrocyte-derived glutamine for replenishment of the amino acid neurotransmitter pools. Perturbations of astrocyte glutamine synthesis have been described in AD, but whether this functionally affects neuronal neurotransmitter synthesis is not known. Since the synthesis and recycling of neurotransmitter glutamate and GABA are intimately coupled to cellular metabolism, the aim of this study was to provide a functional investigation of neuronal and astrocytic energy and neurotransmitter metabolism in AD. To achieve this, we incubated acutely isolated cerebral cortical and hippocampal slices from 8-month-old female 5xFAD mice, in the presence of 13C isotopically enriched substrates, with subsequent gas chromatography-mass spectrometry (GC-MS) analysis. A prominent neuronal hypometabolism of [U-13C]glucose was observed in the hippocampal slices of the 5xFAD mice. Investigating astrocyte metabolism, using [1,2-13C]acetate, revealed a marked reduction in glutamine synthesis, which directly hampered neuronal synthesis of GABA. This was supported by an increased metabolism of exogenously supplied [U-13C]glutamine, suggesting a neuronal metabolic compensation of the reduced astrocytic glutamine supply. In contrast, astrocytic metabolism of [U-13C]GABA was reduced, whereas [U-13C]glutamate metabolism was unaffected. Finally, astrocyte de novo synthesis of glutamate and glutamine was hampered, whereas the enzymatic capacity of glutamine synthetase for ammonia fixation was maintained. Collectively, we demonstrate that deficient astrocyte metabolism leads to reduced glutamine synthesis, directly impairing neuronal GABA synthesis in the 5xFAD brain. These findings suggest that astrocyte metabolic dysfunction may be fundamental for the imbalances of synaptic excitation and inhibition in the AD brain.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/biossíntese , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Isótopos de Carbono , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Homeostase , Camundongos , Camundongos Transgênicos , Neurotransmissores , Presenilina-1/genética
3.
Neurochem Res ; 42(6): 1589-1598, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27686658

RESUMO

Alterations in brain energy metabolism have been suggested to be of fundamental importance for the development of Alzheimer's disease (AD). However, specific changes in brain energetics in the early stages of AD are poorly known. The aim of this study was to investigate cerebral energy metabolism in the APPswe/PSEN1dE9 mouse prior to amyloid plaque formation. Acutely isolated cerebral cortical and hippocampal slices of 3-month-old APPswe/PSEN1dE9 and wild-type control mice were incubated in media containing [U-13C]glucose, [1,2-13C]acetate or [U-13C]glutamine, and tissue extracts were analyzed by mass spectrometry. The ATP synthesis rate of isolated whole-brain mitochondria was assessed by an on-line luciferin-luciferase assay. Significantly increased 13C labeling of intracellular lactate and alanine and decreased tricarboxylic acid (TCA) cycle activity were observed from cerebral cortical slices of APPswe/PSEN1dE9 mice incubated in media containing [U-13C]glucose. No changes in glial [1,2-13C]acetate metabolism were observed. Cerebral cortical slices from APPswe/PSEN1dE9 mice exhibited a reduced capacity for uptake and oxidative metabolism of glutamine. Furthermore, the ATP synthesis rate tended to be decreased in isolated whole-brain mitochondria of APPswe/PSEN1dE9 mice. Thus, several cerebral metabolic changes are evident in the APPswe/PSEN1dE9 mouse prior to amyloid plaque deposition, including altered glucose metabolism, hampered glutamine processing and mitochondrial dysfunctions.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/genética , Placa Amiloide/patologia , Presenilina-1/genética
4.
J Biol Chem ; 290(6): 3359-76, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25525276

RESUMO

SorLA is a neuronal sorting receptor that is genetically associated with Alzheimer disease. SorLA interacts directly with the amyloid precursor protein (APP) and affects the processing of the precursor, leading to a decreased generation of the amyloid-ß peptide. The SorLA complement-type repeat (CR) domains associate in vitro with APP, but the precise molecular determinants of SorLA·APP complex formation and the mechanisms responsible for the effect of binding on APP processing have not yet been elucidated. Here, we have generated protein expression constructs for SorLA devoid of the 11 CR-domains and for two SorLA mutants harboring substitutions of the fingerprint residues in the central CR-domains. We generated SH-SY5Y cell lines that stably express these SorLA variants to study the binding and processing of APP using co-immunoprecipitation and Western blotting/ELISAs, respectively. We found that the SorLA CR-cluster is essential for interaction with APP and that deletion of the CR-cluster abolishes the protection against APP processing. Mutation of identified fingerprint residues in the SorLA CR-domains leads to changes in the O-linked glycosylation of APP when expressed in SH-SY5Y cells. Our results provide novel information on the mechanisms behind the influence of SorLA activity on APP metabolism by controlling post-translational glycosylation in the Golgi, suggesting new strategies against amyloidogenesis in Alzheimer disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Processamento de Proteína Pós-Traducional , Sítios de Ligação , Linhagem Celular Tumoral , Glicosilação , Humanos , Proteínas Relacionadas a Receptor de LDL/química , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Ligação Proteica , Transporte Proteico
5.
Cell Death Dis ; 12(11): 954, 2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34657143

RESUMO

Alzheimer's disease (AD) is an unremitting neurodegenerative disorder characterized by cerebral amyloid-ß (Aß) accumulation and gradual decline in cognitive function. Changes in brain energy metabolism arise in the preclinical phase of AD, suggesting an important metabolic component of early AD pathology. Neurons and astrocytes function in close metabolic collaboration, which is essential for the recycling of neurotransmitters in the synapse. However, this crucial metabolic interplay during the early stages of AD development has not been sufficiently investigated. Here, we provide an integrative analysis of cellular metabolism during the early stages of Aß accumulation in the cerebral cortex and hippocampus of the 5xFAD mouse model of AD. Our electrophysiological examination revealed an increase in spontaneous excitatory signaling in the 5xFAD hippocampus. This hyperactive neuronal phenotype coincided with decreased hippocampal tricarboxylic acid (TCA) cycle metabolism mapped by stable 13C isotope tracing. Particularly, reduced astrocyte TCA cycle activity and decreased glutamine synthesis led to hampered neuronal GABA synthesis in the 5xFAD hippocampus. In contrast, the cerebral cortex of 5xFAD mice displayed an elevated capacity for oxidative glucose metabolism, which may suggest a metabolic compensation in this brain region. We found limited changes when we explored the brain proteome and metabolome of the 5xFAD mice, supporting that the functional metabolic disturbances between neurons and astrocytes are early primary events in AD pathology. In addition, synaptic mitochondrial and glycolytic function was selectively impaired in the 5xFAD hippocampus, whereas non-synaptic mitochondrial function was maintained. These findings were supported by ultrastructural analyses demonstrating disruptions in mitochondrial morphology, particularly in the 5xFAD hippocampus. Collectively, our study reveals complex regional and cell-specific metabolic adaptations in the early stages of amyloid pathology, which may be fundamental for the progressing synaptic dysfunctions in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Astrócitos/metabolismo , Hipocampo/patologia , Sinapses/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Metabolismo Energético , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Hipocampo/metabolismo , Masculino , Metaboloma , Camundongos Transgênicos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Neurotransmissores/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Sinapses/ultraestrutura
6.
Mol Brain ; 13(1): 125, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928252

RESUMO

Frontotemporal dementia (FTD) is amongst the most prevalent early onset dementias and even though it is clinically, pathologically and genetically heterogeneous, a crucial involvement of metabolic perturbations in FTD pathology is being recognized. However, changes in metabolism at the cellular level, implicated in FTD and in neurodegeneration in general, are still poorly understood. Here we generate induced human pluripotent stem cells (hiPSCs) from patients carrying mutations in CHMP2B (FTD3) and isogenic controls generated via CRISPR/Cas9 gene editing with subsequent neuronal and glial differentiation and characterization. FTD3 neurons show a dysregulation of glutamate-glutamine related metabolic pathways mapped by 13C-labelling coupled to mass spectrometry. FTD3 astrocytes show increased uptake of glutamate whilst glutamate metabolism is largely maintained. Using quantitative proteomics and live-cell metabolic analyses, we elucidate molecular determinants and functional alterations of neuronal and glial energy metabolism in FTD3. Importantly, correction of the mutations rescues such pathological phenotypes. Notably, these findings implicate dysregulation of key enzymes crucial for glutamate-glutamine homeostasis in FTD3 pathogenesis which may underlie vulnerability to neurodegeneration. Neurons derived from human induced pluripotent stem cells (hiPSCs) of patients carrying mutations in CHMP2B (FTD3) display major metabolic alterations compared to CRISPR/Cas9 generated isogenic controls. Using quantitative proteomics, 13C-labelling coupled to mass spectrometry metabolic mapping and seahorse analyses, molecular determinants and functional alterations of neuronal and astrocytic energy metabolism in FTD3 were characterized. Our findings implicate dysregulation of glutamate-glutamine homeostasis in FTD3 pathogenesis. In addition, FTD3 neurons recapitulate glucose hypometabolism observed in FTD patient brains. The impaired mitochondria function found here is concordant with disturbed TCA cycle activity and decreased glycolysis in FTD3 neurons. FTD3 neuronal glutamine hypermetabolism is associated with up-regulation of PAG expression and, possibly, ROS production. Distinct compartments of glutamate metabolism can be suggested for the FTD3 neurons. Endogenous glutamate generated from glutamine via PAG may enter the TCA cycle via AAT (left side of neuron) while exogenous glutamate taken up from the extracellular space may be incorporated into the TCA cycle via GDH (right side of the neuron) FTD3 astrocytic glutamate uptake is upregulated whilst glutamate metabolism is largely maintained. Finally, pharmacological reversal of glutamate hypometabolism manifesting from decreased GDH expression should be explored as a novel therapeutic intervention for treating FTD3.


Assuntos
Astrócitos/metabolismo , Demência Frontotemporal/patologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Homeostase , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Neurônios/metabolismo , Aminoácidos/metabolismo , Ciclo do Ácido Cítrico/genética , Metabolismo Energético/genética , Demência Frontotemporal/genética , Regulação da Expressão Gênica , Glicólise/genética , Humanos , Mitocôndrias/metabolismo , Proteômica
7.
J Cereb Blood Flow Metab ; 38(10): 1754-1768, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28621566

RESUMO

The enzyme glutamate dehydrogenase (GDH; Glud1) catalyzes the (reversible) oxidative deamination of glutamate to α-ketoglutarate accompanied by a reduction of NAD+ to NADH. GDH connects amino acid, carbohydrate, neurotransmitter and oxidative energy metabolism. Glutamine is a neurotransmitter precursor used by neurons to sustain the pool of glutamate, but glutamine is also vividly oxidized for support of energy metabolism. This study investigates the role of GDH in neuronal metabolism by employing the Cns- Glud1-/- mouse, lacking GDH in the brain (GDH KO) and metabolic mapping using 13C-labelled glutamine and glucose. We observed a severely reduced oxidative glutamine metabolism during glucose deprivation in synaptosomes and cultured neurons not expressing GDH. In contrast, in the presence of glucose, glutamine metabolism was not affected by the lack of GDH expression. Respiration fuelled by glutamate was significantly lower in brain mitochondria from GDH KO mice and synaptosomes were not able to increase their respiration upon an elevated energy demand. The role of GDH for metabolism of glutamine and the respiratory capacity underscore the importance of GDH for neurons particularly during an elevated energy demand, and it may reflect the large allosteric activation of GDH by ADP.


Assuntos
Metabolismo Energético/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamina/metabolismo , Neurônios/metabolismo , Animais , Respiração Celular/fisiologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo
8.
J Cereb Blood Flow Metab ; 37(3): 1137-1147, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28058963

RESUMO

It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-13C]glucose, [1,2-13C]acetate or [U-13C]ß-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-13C]acetate and [U-13C]ß-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Corpos Cetônicos/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Córtex Cerebral/metabolismo , Glucose/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos , Mitocôndrias/metabolismo , Consumo de Oxigênio
9.
Heliyon ; 3(3): e00267, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28367512

RESUMO

Hens have a tremendous capacity for producing polyclonal antibodies that can subsequently be isolated in high concentrations from their eggs. An approach for further maximizing their potential is to produce multiple antisera in the same individual through multiplexed (multiple simultaneous) immunizations. An unknown with this approach is how many immunogens a single bird is capable of mounting a sizeable antigenic response toward. At what point does it become counter-productive to add more immunogens to the same immunization regimen? In the present study we were able to demonstrate that the competing effects of co-administering multiple immunogens effectively limit the antibody specificities that can be raised in a single individual to a fairly low number. Two potent model immunogens, KLH and CRM197, were administered together with competing antigens in various concentrations and complexities. With an upper limit of 1 mg protein material recommended for chicken immunizations, we found that the maximum number of immunogens that can be reliably used is most likely in the low double digits. The limiting factor for a response to an immunogen could not be related to the number of splenic plasma cells producing antibodies against it. When administering KLH alone, up to 70% of the IgY-producing splenic plasma cells were occupied with producing anti-KLH antibodies; but when simultaneously being exposed to a plethora of other antigens, a response of a comparable magnitude could be mounted with a splenic plasma cell involvement of less than 5%. Two breeds of egg-layers were compared with respect to antibody production in an initial experiment, but differences in antibody productivity were negligible. Although our findings support the use of multiplexed immunizations in the hen, we find that the number of immunogens cannot be stretched much higher than the handful that has been used in mammalian models to date.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa