Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(9): 4074-4081, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126029

RESUMO

Misfolded proteins associated with various neurodegenerative diseases often accumulate in tissues or circulate in biological fluids years before the clinical onset, thus representing ideal diagnostic targets. Real-time quaking-induced conversion (RT-QuIC), a protein-based seeded-amplification assay, holds great potential for early disease detection, yet challenges remain for routine diagnostic application. Chronic Wasting Disease (CWD), associated with misfolded prion proteins of cervids, serves as an ideal model for evaluating new RT-QuIC methodologies. In this study, we investigate the previously untested hypothesis that incorporating nanoparticles into RT-QuIC assays can enhance their speed and sensitivity when applied to biological samples. We show that adding 50 nm silica nanoparticles to RT-QuIC experiments (termed Nano-QuIC) for CWD diagnostics greatly improves the performance by reducing detection times 2.5-fold and increasing sensitivity 10-fold by overcoming the effect of inhibitors in complex tissue samples. Crucially, no false positives were observed with these 50 nm silica nanoparticles, demonstrating the enhanced reliability and potential for diagnostic application of Nano-QuIC in detecting misfolded proteins.


Assuntos
Nanopartículas , Dobramento de Proteína , Proteínas/química , Reprodutibilidade dos Testes , Temperatura
2.
Nat Commun ; 13(1): 1869, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387995

RESUMO

Open-channel microfluidics enables precise positioning and confinement of liquid volume to interface with tightly integrated optics, sensors, and circuit elements. Active actuation via electric fields can offer a reduced footprint compared to passive microfluidic ensembles and removes the burden of intricate mechanical assembly of enclosed systems. Typical systems actuate via manipulating surface wettability (i.e., electrowetting), which can render low-voltage but forfeits open-microchannel confinement. The dielectric polarization force is an alternative which can generate open liquid microchannels (sub-100 µm) but requires large operating voltages (50-200 VRMS) and low conductivity solutions. Here we show actuation of microchannels as narrow as 1 µm using voltages as low as 0.5 VRMS for both deionized water and physiological buffer. This was achieved using resonant, nanoscale focusing of radio frequency power and an electrode geometry designed to abate surface tension. We demonstrate practical fluidic applications including open mixing, lateral-flow protein labeling, filtration, and viral transport for infrared biosensing-known to suffer strong absorption losses from enclosed channel material and water. This tube-free system is coupled with resonant wireless power transfer to remove all obstructing hardware - ideal for high-numerical-aperture microscopy. Wireless, smartphone-driven fluidics is presented to fully showcase the practical application of this technology.


Assuntos
Eletroumectação , Microfluídica , Tensão Superficial , Água , Molhabilidade
3.
Sci Rep ; 12(1): 12246, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851406

RESUMO

Diagnostic tools for the detection of protein-misfolding diseases (i.e., proteopathies) are limited. Gold nanoparticles (AuNPs) facilitate sensitive diagnostic techniques via visual color change for the identification of a variety of targets. In parallel, recently developed quaking-induced conversion (QuIC) assays leverage protein-amplification and fluorescent signaling for the accurate detection of misfolded proteins. Here, we combine AuNP and QuIC technologies for the visual detection of amplified misfolded prion proteins from tissues of wild white-tailed deer infected with chronic wasting disease (CWD), a prion disease of cervids. Our newly developed assay, MN-QuIC, enables both naked-eye and light-absorbance measurements for detection of misfolded prions. MN-QuIC leverages basic laboratory equipment that is cost-effective and portable, thus facilitating real-time prion diagnostics across a variety of settings. In addition to laboratory-based tests, we deployed to a rural field-station in southeastern Minnesota and tested for CWD on site. We successfully demonstrated that MN-QuIC is functional in a non-traditional laboratory setting by performing a blinded analysis in the field and correctly identifying all CWD positive and CWD not-detected deer at the field site in 24 h, thus documenting the portability of the assay. White-tailed deer tissues used to validate MN-QuIC included medial retropharyngeal lymph nodes, parotid lymph nodes, and palatine tonsils. Importantly, all of the white-tailed deer (n = 63) were independently tested using ELISA, IHC, and/or RT-QuIC technologies and results secured with MN-QuIC were 95.7% and 100% consistent with these tests for positive and non-detected animals, respectively. We hypothesize that electrostatic forces help govern the AuNP/prion interactions and conclude that MN-QuIC has great potential for sensitive, field-deployable diagnostics for CWD, with future potential diagnostic applications for a variety of proteopathies.


Assuntos
Cervos , Nanopartículas Metálicas , Príons , Doença de Emaciação Crônica , Animais , Ouro , Príons/análise , Doença de Emaciação Crônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa