Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
PLoS Genet ; 20(3): e1011088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437248

RESUMO

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.


Assuntos
Fator F , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Fímbrias/genética , Plasmídeos/genética , DNA Bacteriano , Proteínas de Bactérias/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(18): e2119907119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35471908

RESUMO

The Porphyromonas gingivalis type IX secretion system (T9SS) promotes periodontal disease by secreting gingipains and other virulence factors. By in situ cryoelectron tomography, we report that the P. gingivalis T9SS consists of 18 PorM dimers arranged as a large, caged ring in the periplasm. Near the outer membrane, PorM dimers interact with a PorKN ring complex of ∼52 nm in diameter. PorMKN translocation complexes of a given T9SS adopt distinct conformations energized by the proton motive force, suggestive of different activation states. At the inner membrane, PorM associates with a cytoplasmic complex that exhibits 12-fold symmetry and requires both PorM and PorL for assembly. Activated motors deliver substrates across the outer membrane via one of eight Sov translocons arranged in a ring. The T9SSs are unique among known secretion systems in bacteria and eukaryotes in their assembly as supramolecular machines composed of apparently independently functioning translocation motors and export pores.


Assuntos
Proteínas de Bactérias , Porphyromonas gingivalis , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Periplasma/metabolismo , Fatores de Virulência/metabolismo
3.
Mol Microbiol ; 117(5): 1275-1290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35434837

RESUMO

F plasmids circulate widely among the Enterobacteriaceae through encoded type IV secretion systems (T4SSF s). Assembly of T4SSF s and associated F pili requires 10 VirB/VirD4-like Tra subunits and eight or more F-specific subunits. Recently, we presented evidence using in situ cryoelectron tomography (cryoET) that T4SSF s undergo structural transitions when activated for pilus production, and that assembled pili are deposited onto alternative basal platforms at the cell surface. Here, we deleted eight conserved F-specific genes from the MOBF12C plasmid pED208 and quantitated effects on plasmid transfer, pilus production by fluorescence microscopy, and elaboration of T4SSF structures by in situ cryoET. Mutant phenotypes supported the assignment of F-specific subunits into three functional Classes: (i) TraF, TraH, and TraW are required for all T4SSF -associated activities, (ii) TraU, TraN, and TrbC are nonessential but contribute significantly to distinct T4SSF functions, and (iii) TrbB is essential for F pilus production but not for plasmid transfer. Equivalent mutations in a phylogenetically distantly related MOB12A F plasmid conferred similar phenotypes and generally supported these Class assignments. We present a new structure-driven model in which F-specific subunits contribute to distinct steps of T4SSF assembly or activation to regulate DNA transfer and F pilus dynamics and deposition onto alternative platforms.


Assuntos
Proteínas de Escherichia coli , Fator F , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Plasmídeos/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(41): 25751-25758, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989140

RESUMO

Although the F-specific ssRNA phage MS2 has long had paradigm status, little is known about penetration of the genomic RNA (gRNA) into the cell. The phage initially binds to the F-pilus using its maturation protein (Mat), and then the Mat-bound gRNA is released from the viral capsid and somehow crosses the bacterial envelope into the cytoplasm. To address the mechanics of this process, we fluorescently labeled the ssRNA phage MS2 to track F-pilus dynamics during infection. We discovered that ssRNA phage infection triggers the release of F-pili from host cells, and that higher multiplicity of infection (MOI) correlates with detachment of longer F-pili. We also report that entry of gRNA into the host cytoplasm requires the F-plasmid-encoded coupling protein, TraD, which is located at the cytoplasmic entrance of the F-encoded type IV secretion system (T4SS). However, TraD is not essential for pilus detachment, indicating that detachment is triggered by an early step of MS2 engagement with the F-pilus or T4SS. We propose a multistep model in which the ssRNA phage binds to the F-pilus and through pilus retraction engages with the distal end of the T4SS channel at the cell surface. Continued pilus retraction pulls the Mat-gRNA complex out of the virion into the T4SS channel, causing a torsional stress that breaks the mature F-pilus at the cell surface. We propose that phage-induced disruptions of F-pilus dynamics provides a selective advantage for infecting phages and thus may be prevalent among the phages specific for retractile pili.


Assuntos
Escherichia coli/virologia , Fímbrias Bacterianas/virologia , Levivirus/fisiologia , Vírus de RNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Levivirus/genética , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
5.
Mol Microbiol ; 115(3): 436-452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326642

RESUMO

Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.


Assuntos
Conjugação Genética , Fímbrias Bacterianas/fisiologia , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/fisiologia , Sistemas de Translocação de Proteínas/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/fisiologia , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/fisiologia , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Microscopia Crioeletrônica , Bactérias Gram-Negativas/ultraestrutura , Infecções por Bactérias Gram-Negativas/microbiologia , Helicobacter pylori/química , Helicobacter pylori/fisiologia , Humanos , Legionella pneumophila/química , Legionella pneumophila/fisiologia , Simulação de Acoplamento Molecular , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/ultraestrutura , Relação Estrutura-Atividade , Sistemas de Secreção Tipo IV/ultraestrutura
6.
Plasmid ; 123-124: 102652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228885

RESUMO

Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.


Assuntos
Escherichia coli , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/genética , Plasmídeos/genética , Escherichia coli/genética , Fator F , Análise de Sequência , Conjugação Genética , Proteínas de Bactérias/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(28): 14222-14227, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239340

RESUMO

Bacterial conjugation systems are members of the large type IV secretion system (T4SS) superfamily. Conjugative transfer of F plasmids residing in the Enterobacteriaceae was first reported in the 1940s, yet the architecture of F plasmid-encoded transfer channel and its physical relationship with the F pilus remain unknown. We visualized F-encoded structures in the native bacterial cell envelope by in situ cryoelectron tomography (CryoET). Remarkably, F plasmids encode four distinct structures, not just the translocation channel or channel-pilus complex predicted by prevailing models. The F1 structure is composed of distinct outer and inner membrane complexes and a connecting cylinder that together house the envelope-spanning translocation channel. The F2 structure is essentially the F1 complex with the F pilus attached at the outer membrane (OM). Remarkably, the F3 structure consists of the F pilus attached to a thin, cell envelope-spanning stalk, whereas the F4 structure consists of the pilus docked to the OM without an associated periplasmic density. The traffic ATPase TraC is configured as a hexamer of dimers at the cytoplasmic faces of the F1 and F2 structures, where it respectively regulates substrate transfer and F pilus biogenesis. Together, our findings present architectural renderings of the DNA conjugation or "mating" channel, the channel-pilus connection, and unprecedented pilus basal structures. These structural snapshots support a model for biogenesis of the F transfer system and allow for detailed comparisons with other structurally characterized T4SSs.


Assuntos
Membrana Celular/ultraestrutura , Escherichia coli/ultraestrutura , Fator F/ultraestrutura , Fímbrias Bacterianas/ultraestrutura , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Membrana Celular/genética , Conjugação Genética/genética , Microscopia Crioeletrônica , Citoplasma/genética , Citoplasma/ultraestrutura , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fator F/genética , Fímbrias Bacterianas/genética , Sistemas de Secreção Tipo IV/genética
8.
Mol Microbiol ; 114(2): 214-229, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32239779

RESUMO

A large subfamily of the type IV secretion systems (T4SSs), termed the conjugation systems, transmit mobile genetic elements (MGEs) among many bacterial species. In the initiating steps of conjugative transfer, DNA transfer and replication (Dtr) proteins assemble at the origin-of-transfer (oriT) sequence as the relaxosome, which nicks the DNA strand destined for transfer and couples the nicked substrate with the VirD4-like substrate receptor. Here, we defined contributions of the Dtr protein TraK, a predicted member of the Ribbon-Helix-Helix (RHH) family of DNA-binding proteins, to transfer of DNA and protein substrates through the pKM101-encoded T4SS. Using a combination of cross-linking/affinity pull-downs and two-hybrid assays, we determined that TraK self-associates as a probable tetramer and also forms heteromeric contacts with pKM101-encoded TraI relaxase, VirD4-like TraJ receptor, and VirB11-like and VirB4-like ATPases, TraG and TraB, respectively. TraK also promotes stable TraJ-TraB complex formation and stimulates binding of TraI with TraB. Finally, TraK is required for or strongly stimulates the transfer of cognate (pKM101, TraI relaxase) and noncognate (RSF1010, MobA relaxase) substrates. We propose that TraK functions not only to nucleate pKM101 relaxosome assembly, but also to activate the TrapKM101 T4SS via interactions with the ATPase energy center positioned at the channel entrance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Nucleoproteínas/metabolismo , Proteínas Periplásmicas/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/metabolismo , Conjugação Genética/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Nucleoproteínas/fisiologia , Proteínas Periplásmicas/fisiologia , Plasmídeos/genética
10.
Mol Microbiol ; 111(1): 96-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30264928

RESUMO

Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope-spanning translocation channel, and those functioning in Gram-negative species additionally elaborate an extracellular pilus to initiate donor-recipient cell contacts. We report that pKM101, a self-transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101-encoded proteins, the pilus-tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface-displayed TraC and Pep are required for an efficient conjugative transfer, 'extracellular complementation' potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the ß-barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS-encoded, pilus-independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.


Assuntos
Adesinas Bacterianas/metabolismo , Conjugação Genética , Escherichia coli/genética , Proteínas de Fímbrias/metabolismo , Transferência Genética Horizontal , Plasmídeos , Bacteriófago PRD1/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Multimerização Proteica , Transporte Proteico , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Ligação Viral
11.
Mol Microbiol ; 107(4): 455-471, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29235173

RESUMO

Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram-negative and Gram-positive bacteria. They play important roles through the contact-dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact-independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F-pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of 'paradigmatic' and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.


Assuntos
Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Animais , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Interações Hospedeiro-Patógeno , Humanos , Plasmídeos
12.
Mol Microbiol ; 109(3): 291-305, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29723434

RESUMO

Gram-positive bacteria deploy type IV secretion systems (T4SSs) to facilitate horizontal gene transfer. The T4SSs of Gram-positive bacteria rely on surface adhesins as opposed to conjugative pili to facilitate mating. Enterococcus faecalis PrgB is a surface adhesin that promotes mating pair formation and robust biofilm development in an extracellular DNA (eDNA) dependent manner. Here, we report the structure of the adhesin domain of PrgB. The adhesin domain binds and compacts DNA in vitro. In vivo PrgB deleted of its adhesin domain does not support cellular aggregation, biofilm development and conjugative DNA transfer. PrgB also binds lipoteichoic acid (LTA), which competes with DNA binding. We propose that PrgB binding and compaction of eDNA facilitates cell aggregation and plays an important role in establishment of early biofilms in mono- or polyspecies settings. Within these biofilms, PrgB mediates formation and stabilization of direct cell-cell contacts through alternative binding of cell-bound LTA, which in turn promotes establishment of productive mating junctions and efficient intra- or inter-species T4SS-mediated gene transfer.


Assuntos
Junções Aderentes/fisiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Conjugação Genética , Enterococcus faecalis/fisiologia , Adesinas Bacterianas/genética , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Enterococcus faecalis/genética , Transferência Genética Horizontal , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Sistemas de Secreção Tipo IV
13.
Curr Top Microbiol Immunol ; 418: 233-260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29808338

RESUMO

The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/química , Proteínas Recombinantes de Fusão/metabolismo , Sistemas de Secreção Tipo IV/metabolismo
14.
Mol Microbiol ; 105(2): 273-293, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28452085

RESUMO

Recent studies have shown that conjugation systems of Gram-negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved - but also intrinsically conformationally flexible - scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Conjugação Genética/genética , Agrobacterium tumefaciens/genética , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Fímbrias Bacterianas/metabolismo , Ligação Proteica , Transporte Proteico/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Virulência/metabolismo
15.
Mol Microbiol ; 103(3): 398-412, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27785854

RESUMO

Upon sensing of the peptide pheromone cCF10, Enterococcus faecalis cells carrying pCF10 produce three surface adhesins (PrgA, PrgB or Aggregation Substance, PrgC) and the Prg/Pcf type IV secretion system and, in turn, conjugatively transfer the plasmid at high frequencies to recipient cells. Here, we report that cCF10 induction is highly toxic to cells sustaining a deletion of prgU, a small orf located immediately downstream of prgB on pCF10. Upon pheromone exposure, these cells overproduce the Prg adhesins and display impaired envelope integrity, as evidenced by antibiotic susceptibility, misplaced division septa and cell lysis. Compensatory mutations in regulatory loci controlling expression of pCF10-encoded prg/pcf genes, or constitutive PrgU overproduction, block production of the Prg adhesins and render cells insensitive to pheromone. Cells engineered to overproduce PrgB, even independently of other pCF10-encoded proteins, have severely compromised cell envelopes and strong growth defects. PrgU has an RNA-binding fold, and prgB-prgU gene pairs are widely distributed among E. faecalis isolates and other enterococcal and staphylococcal species. Together, our findings support a model in which PrgU proteins represent a novel class of RNA-binding regulators that act to mitigate toxicity accompanying overproduction of PrgB-like adhesins in E. faecalis and other clinically-important Gram-positive species.


Assuntos
Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Oligopeptídeos/metabolismo , Feromônios/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Conjugação Genética/genética , DNA Bacteriano/metabolismo , Enterococcus , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Oligopeptídeos/genética , Feromônios/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Deleção de Sequência/genética , Atrativos Sexuais/antagonistas & inibidores , Atrativos Sexuais/genética , Atrativos Sexuais/metabolismo , Transcrição Gênica/genética
16.
Curr Top Microbiol Immunol ; 413: 1-30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29536353

RESUMO

The bacterial type IV secretion systems (T4SSs) are a highly functionally and structurally diverse superfamily of secretion systems found in many species of Gram-negative and -positive bacteria. Collectively, the T4SSs can translocate DNA and monomeric and multimeric protein substrates to a variety of bacterial and eukaryotic cell types. Detailed phylogenomics analyses have established that the T4SSs evolved from ancient conjugation machines whose original functions were to disseminate mobile DNA elements within and between bacterial species. How members of the T4SS superfamily evolved to recognize and translocate specific substrate repertoires to prokaryotic or eukaryotic target cells is a fascinating question from evolutionary, biological, and structural perspectives. In this chapter, we will summarize recent findings that have shaped our current view of the biological diversity of the T4SSs. We focus mainly on two subtypes, designated as the types IVA (T4ASS) and IVB (T4BSS) systems that respectively are represented by the paradigmatic Agrobacterium tumefaciens VirB/VirD4 and Legionella pneumophila Dot/Icm T4SSs. We present current information about the composition and architectures of these representative systems. We also describe how these and a few related T4ASS and T4BSS members evolved as specialized nanomachines through acquisition of novel domains or subunits, a process that ultimately generated extensive genetic and structural mosaicism among this secretion superfamily. Finally, we present new phylogenomics information establishing that the T4BSSs are much more broadly distributed than initially envisioned.


Assuntos
Evolução Biológica , Legionella pneumophila , Agrobacterium tumefaciens , Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Biodiversidade , Sistemas de Secreção Tipo IV
17.
J Bacteriol ; 198(19): 2701-18, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27432829

RESUMO

UNLABELLED: Bacterial type IV secretion systems (T4SSs) are composed of two major subfamilies, conjugation machines dedicated to DNA transfer and effector translocators for protein transfer. We show here that the Escherichia coli pKM101-encoded conjugation system, coupled with chimeric substrate receptors, can be repurposed for transfer of heterologous effector proteins. The chimeric receptors were composed of the N-terminal transmembrane domain of pKM101-encoded TraJ fused to soluble domains of VirD4 homologs functioning in Agrobacterium tumefaciens, Anaplasma phagocytophilum, or Wolbachia pipientis A chimeric receptor assembled from A. tumefaciens VirD4 (VirD4At) mediated transfer of a MOBQ plasmid (pML122) and A. tumefaciens effector proteins (VirE2, VirE3, and VirF) through the pKM101 transfer channel. Equivalent chimeric receptors assembled from the rickettsial VirD4 homologs similarly supported the transfer of known or candidate effectors from rickettsial species. These findings establish a proof of principle for use of the dedicated pKM101 conjugation channel, coupled with chimeric substrate receptors, to screen for translocation competency of protein effectors from recalcitrant species. Many T4SS receptors carry sequence-variable C-terminal domains (CTDs) with unknown function. While VirD4At and the TraJ/VirD4At chimera with their CTDs deleted supported pML122 transfer at wild-type levels, ΔCTD variants supported transfer of protein substrates at strongly diminished or elevated levels. We were unable to detect binding of VirD4At's CTD to the VirE2 effector, although other VirD4At domains bound this substrate in vitro We propose that CTDs evolved to govern the dynamics of substrate presentation to the T4SS either through transient substrate contacts or by controlling substrate access to other receptor domains. IMPORTANCE: Bacterial type IV secretion systems (T4SSs) display striking versatility in their capacity to translocate DNA and protein substrates to prokaryotic and eukaryotic target cells. A hexameric ATPase, the type IV coupling protein (T4CP), functions as a substrate receptor for nearly all T4SSs. Here, we report that chimeric T4CPs mediate transfer of effector proteins through the Escherichia coli pKM101-encoded conjugation system. Studies with these repurposed conjugation systems established a role for acidic C-terminal domains of T4CPs in regulating substrate translocation. Our findings advance a mechanistic understanding of T4CP receptor activity and, further, support a model in which T4SS channels function as passive conduits for any DNA or protein substrates that successfully engage with and pass through the T4CP specificity checkpoint.


Assuntos
Conjugação Genética/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas Recombinantes de Fusão , Sistemas de Secreção Tipo IV/fisiologia , DNA Bacteriano , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Domínios Proteicos
18.
Mol Biol Evol ; 32(10): 2585-97, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26060280

RESUMO

Horizontal gene transfer threatens the therapeutic success of antibiotics by facilitating the rapid dissemination of resistance alleles among bacterial species. The conjugative mobile element Tn916 provides an excellent context for examining the role of adaptive parasexuality as it carries the tetracycline-resistance allele tetM and has been identified in a wide range of pathogens. We have used a combination of experimental evolution and allelic frequency measurements to gain insights into the adaptive trajectories leading to tigecycline resistance in a hospital strain of Enterococcus faecalis and predict what mechanisms of resistance are most likely to appear in the clinical setting. Here, we show that antibiotic selection led to the near fixation of adaptive alleles that simultaneously altered TetM expression and produced remarkably increased levels of Tn916 horizontal gene transfer. In the absence of drug, approximately 1 in 120,000 of the nonadapted E. faecalis S613 cells had an excised copy of Tn916, whereas nearly 1 in 50 cells had an excised copy of Tn916 upon selection for resistance resulting in a more than 1,000-fold increase in conjugation rates. We also show that tigecycline, a translation inhibitor, selected for a mutation in the ribosomal S10 protein. Our results show the first example of mutations that concurrently confer resistance to an antibiotic and lead to constitutive conjugal-transfer of the resistance allele. Selection created a highly parasexual phenotype and high frequency of Tn916 jumping demonstrating how the use of antibiotics can lead directly to the proliferation of resistance in, and potentially among, pathogens.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Enterococcus faecalis/genética , Hospitais , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Alelos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cromossomos Bacterianos/genética , Evolução Molecular Direcionada , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Dosagem de Genes , Humanos , Minociclina/análogos & derivados , Minociclina/farmacologia , Dados de Sequência Molecular , Mutagênese Insercional/genética , Fenótipo , Sequências Reguladoras de Ácido Nucleico/genética , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Deleção de Sequência , Tigeciclina , Resultado do Tratamento
19.
Mol Microbiol ; 95(4): 660-77, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25431047

RESUMO

Enterococcus faecalis pCF10 transfers at high frequencies upon pheromone induction of the prgQ transfer operon. This operon codes for three cell wall-anchored proteins - PrgA, PrgB (aggregation substance) and PrgC - and a type IV secretion system through which the plasmid is delivered to recipient cells. Here, we defined the contributions of the Prg surface proteins to plasmid transfer, biofilm formation and virulence using the Caenorhabditis elegans infection model. We report that a combination of PrgB and extracellular DNA (eDNA), but not PrgA or PrgC, was required for extensive cellular aggregation and pCF10 transfer at wild-type frequencies. In addition to PrgB and eDNA, production of PrgA was necessary for extensive binding of enterococci to abiotic surfaces and development of robust biofilms. However, although PrgB is a known virulence factor in mammalian infection models, we determined that PrgA and PrgC, but not PrgB, were required for efficient killing in the worm infection model. We propose that the pheromone-responsive, conjugative plasmids of E. faecalis have retained Prg-like surface functions over evolutionary time for attachment, colonization and robust biofilm development. In natural settings, these biofilms are polymicrobial in composition and constitute optimal environments for signal exchange, mating pair formation and widespread lateral gene transfer.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Proteínas de Membrana/metabolismo , Plasmídeos , Animais , Proteínas de Bactérias/genética , Conjugação Genética , Enterococcus faecalis/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Deleção de Sequência , Transcrição Gênica , Virulência/genética , Fatores de Virulência/metabolismo
20.
J Bacteriol ; 197(14): 2335-49, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939830

RESUMO

UNLABELLED: Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE: For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are largely undefined. Here, we supply genetic and biochemical evidence that a helical bundle, designated the all-alpha domain (AAD), of T4SS receptors functions as a substrate specificity determinant. We show that AADs from two substrate receptors, Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC, bind DNA without sequence or strand preference but specifically bind the cognate relaxases responsible for nicking and piloting the transferred strand through the T4SS. We propose that interactions of receptor AADs with DNA-processing factors constitute a basis for selective coupling of mobile DNA elements with type IV secretion channels.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/metabolismo , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , DNA Bacteriano , Enterococcus faecalis/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa