Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883278

RESUMO

Cancer cells can survive chemotherapy-induced stress, but how they recover from it is not known. Using a temporal multiomics approach, we delineate the global mechanisms of proteotoxic stress resolution in multiple myeloma cells recovering from proteasome inhibition. Our observations define layered and protracted programs for stress resolution that encompass extensive changes across the transcriptome, proteome, and metabolome. Cellular recovery from proteasome inhibition involved protracted and dynamic changes of glucose and lipid metabolism and suppression of mitochondrial function. We demonstrate that recovering cells are more vulnerable to specific insults than acutely stressed cells and identify the general control nonderepressable 2 (GCN2)-driven cellular response to amino acid scarcity as a key recovery-associated vulnerability. Using a transcriptome analysis pipeline, we further show that GCN2 is also a stress-independent bona fide target in transcriptional signature-defined subsets of solid cancers that share molecular characteristics. Thus, identifying cellular trade-offs tied to the resolution of chemotherapy-induced stress in tumor cells may reveal new therapeutic targets and routes for cancer therapy optimization.


Assuntos
Neoplasias/tratamento farmacológico , Estresse Fisiológico/efeitos dos fármacos , Antineoplásicos/farmacologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Humanos , Metaboloma/genética , Mitocôndrias/metabolismo , Mieloma Múltiplo/metabolismo , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Inibidores de Proteassoma/farmacologia , Proteólise , Proteoma/genética , Análise de Sistemas , Transcriptoma/genética
2.
J Med Genet ; 58(12): 815-831, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33172956

RESUMO

BACKGROUND: Pathogenic variants of GNB5 encoding the ß5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening.


Assuntos
Arritmias Cardíacas/genética , Deficiências do Desenvolvimento/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Coração/fisiopatologia , Mutação , Transdução de Sinais/genética , Adolescente , Animais , Arritmias Cardíacas/fisiopatologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica/métodos , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Síndrome , Sequenciamento do Exoma/métodos , Adulto Jovem
3.
Genet Med ; 23(10): 1873-1881, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113002

RESUMO

PURPOSE: Phosphatidylinositol Glycan Anchor Biosynthesis, class G (PIGG) is an ethanolamine phosphate transferase catalyzing the modification of glycosylphosphatidylinositol (GPI). GPI serves as an anchor on the cell membrane for surface proteins called GPI-anchored proteins (GPI-APs). Pathogenic variants in genes involved in the biosynthesis of GPI cause inherited GPI deficiency (IGD), which still needs to be further characterized. METHODS: We describe 22 individuals from 19 unrelated families with biallelic variants in PIGG. We analyzed GPI-AP surface levels on granulocytes and fibroblasts for three and two individuals, respectively. We demonstrated enzymatic activity defects for PIGG variants in vitro in a PIGG/PIGO double knockout system. RESULTS: Phenotypic analysis of reported individuals reveals shared PIGG deficiency-associated features. All tested GPI-APs were unchanged on granulocytes whereas CD73 level in fibroblasts was decreased. In addition to classic IGD symptoms such as hypotonia, intellectual disability/developmental delay (ID/DD), and seizures, individuals with PIGG variants of null or severely decreased activity showed cerebellar atrophy, various neurological manifestations, and mitochondrial dysfunction, a feature increasingly recognized in IGDs. Individuals with mildly decreased activity showed autism spectrum disorder. CONCLUSION: This in vitro system is a useful method to validate the pathogenicity of variants in PIGG and to study PIGG physiological functions.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Humanos , Proteínas de Membrana , Linhagem , Convulsões , Virulência
4.
Epilepsia ; 62(2): e35-e41, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410539

RESUMO

The phosphatidylinositol glycan anchor biosynthesis class S protein (PIGS) gene has recently been implicated in a novel congenital disorder of glycosylation resulting in autosomal recessive inherited glycosylphosphatidylinositol-anchored protein (GPI-AP) deficiency. Previous studies described seven patients with biallelic variants in the PIGS gene, of whom two presented with fetal akinesia and five with global developmental delay and epileptic developmental encephalopathy. We present the molecular and clinical characteristics of six additional individuals from five families with unreported variants in PIGS. All individuals presented with hypotonia, severe global developmental delay, microcephaly, intractable early infantile epilepsy, and structural brain abnormalities. Additional findings include vision impairment, hearing loss, renal malformation, and hypotonic facial appearances with minor dysmorphic features but without a distinctive facial gestalt. Four individuals died due to neurologic complications. GPI anchoring studies performed on one individual revealed a significant decrease in GPI-APs. We confirm that biallelic variants in PIGS cause vitamin pyridoxine-responsive epilepsy due to inherited GPI deficiency and expand the genotype and phenotype of PIGS-related disorder. Further delineation of the molecular spectrum of PIGS-related disorders would improve management, help develop treatments, and encourage the expansion of diagnostic genetic testing to include this gene as a potential cause of neurodevelopmental disorders and epilepsy.


Assuntos
Aciltransferases/genética , Deficiências do Desenvolvimento/genética , Proteínas Ligadas por GPI/deficiência , Malformações do Sistema Nervoso/genética , Espasmos Infantis/genética , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Fácies , Feminino , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Humanos , Lactente , Rim/anormalidades , Masculino , Microcefalia/genética , Microcefalia/fisiopatologia , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/fisiopatologia , Fenótipo , Espasmos Infantis/fisiopatologia , Transtornos da Visão/genética , Transtornos da Visão/fisiopatologia
5.
Gene ; 899: 148119, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38160741

RESUMO

BACKGROUND: The VPS13 family of proteins has been implicated in lipid transport and trafficking between endoplasmic reticulum and organelles, to maintain homeostasis of subcellular membranes. Recently, pathogenic variants in each human VPS13S gene, have been linked to distinct human neurodevelopmental or neurodegenerative disorders. Within the VPS13 family of genes, VPS13D is known to be implicated in mitochondria homeostasis and function. METHODS: We investigated a Pakistani sibship affected with neurodevelopmental impairment and severe hyperkinetic (choreoathetoid) movements. Whole exome sequencing (WES) and Sanger sequencing were performed to identify potential candidate variants segregating in the family. We described clinical phenotypes and natural history of the disease during a 3-year clinical follow-up and summarized literature data related to previously identified patients with VPS13D-related neurological disorders. RESULTS: We identified by WES an homozygous non-synonymous variant in VPS13D (c.5723 T > C; p.Ile1908Thr) as the potential underlying cause of the disease in our family. Two young siblings developed an early-onset neurological impairment characterized by global developmental delay, with impaired speech and motor milestones, associated to hyperkinetic movement disorders as well as progressive and non-progressive neurological abnormalities. CONCLUSION: In this study we delineated the heterogeneity of VPS13D-related clinical phenotypes and described a novel VPS13D homozygous variant associated with severe neurological impairment. Further studies will be pivotal to understand the exact VPS13D function and its impact on mitochondria homeostasis, brain development and regulation of movements, to further clarify genotype-phenotype correlations and provide crucial prognostic information and potential therapeutic implications.


Assuntos
Transtornos dos Movimentos , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Humanos , Transtornos dos Movimentos/genética , Proteínas/genética , Homozigoto , Fenótipo , Transtornos do Neurodesenvolvimento/genética
6.
J Comp Physiol B ; 190(4): 403-418, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335741

RESUMO

For a comprehensive understanding of fish responses to increasing thermal stress in marine environments, we investigated tissue energetics, antioxidant levels, inflammatory and cell death responses in Sparus aurata (gilthead seabream) red muscle during exposure to elevated temperatures (24 °C, 26 °C, 30 °C) compared to the control temperature of 18 °C. Energetic aspects were assessed by determining lactate, glucose and lipids levels in blood plasma, ATP, ADP and AMP levels, and AMPK phosphorylation as an indicator of regulatory changes in energy metabolism, in tissue extracts. Oxidative defence was assessed by determining superoxide dismutase, catalase and glutathione reductase maximum activities. Moreover, xanthine levels were determined as an indicator of purine conversion to xanthine and associated ROS production. In the context of inflammatory response and cell death due to oxidative stress, pro-inflammatory cytokines (IkBα phosphorylation, IL-6 and TNFα) levels, and LC3 II/I ratio and SQSTM1/p62 as indicators of autophagic-lysosomal pathway were also determined. A recovery in the efficacy of ATP production after a marked decrease during the 1st day of exposure to 24 °C is observed. This biphasic pattern is paralleled by antioxidant enzymes' activities and inflammatory and autophagy responses, indicating a close correlation between ATP turnover and stress responses, which may benefit tissue function and survival. However, exposure beyond 24 °C caused tissue's antioxidant capacity loss, triggering the inflammatory and cell death response, leading to increased fish mortality. The results of the present study set the thermal limits of the gilthead seabream at 22-24 °C and establish the used cellular and metabolic indicators as tools for the definition of the extreme thermal limits in marine organisms.


Assuntos
Doenças dos Peixes/metabolismo , Transtornos de Estresse por Calor/metabolismo , Dourada/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/análise , Morte Celular , Metabolismo Energético , Proteínas de Peixes/metabolismo , Transtornos de Estresse por Calor/veterinária , Inflamação/metabolismo , Ácido Láctico/sangue , Masculino , Músculos/metabolismo , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/sangue , Xantina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa