Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 35(33): 11719-28, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26290248

RESUMO

The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. SIGNIFICANCE STATEMENT: There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact. These results cannot be explained as a deficit in attention, since the temporary lesion affected only the reach choices. Thus, PRR is a part of a network for making reach decisions.


Assuntos
Tomada de Decisões/fisiologia , Movimento/fisiologia , Inibição Neural/fisiologia , Lobo Parietal/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Espacial/fisiologia , Animais , Macaca mulatta , Masculino , Recompensa , Campos Visuais/fisiologia
2.
Exp Brain Res ; 222(1-2): 159-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22923206

RESUMO

Continuous and sequential movements are controlled by widely distributed brain regions. A series of studies have contributed to understanding the functional role of these regions in a variety of visuomotor tasks. However, little is known about the neural interactions underpinning continuous movements. In the current study, we examine the spatiotemporal neural interactions underlying continuous drawing movements and the association of them with behavioral components. We conducted an experiment in which subjects copied a pentagon continuously for ~45 s using an XY joystick, while neuromagnetic fluxes were recorded from their head using a 248-sensor whole-head magnetoencephalography (MEG) device. Each sensor time series was rendered stationary and non-autocorrelated by applying an autoregressive integrated moving average model and taking the residuals. We used the directional variability of the movement as a behavioral measure of the controls generated. The main objective of this study was to assess the relation between neural interactions and the variability of movement direction. That is, we divided the continuous recordings into consecutive periods (i.e., time-bins) of 51 steps duration and computed the pairwise cross-correlations between the prewhitened time series in each time-bin. The circular standard deviation of the movement direction within each time-bin provides an estimate of the directional variability of the 51-ms trajectory segment. We looked at the association between neural interactions and variability of movement direction, separately for each pair of sensors, by running a cross-correlation analysis between the strength of the MEG pairwise cross-correlations and the circular standard deviations. We identified two types of neuronal networks: in one, the neural interactions are correlated with the directional variability of the movement at negative time-lags (feedforward), and in the other, the neural interactions are correlated with the directional variability of the movement at positive time-lags (feedback). Sensors associated mostly with feedforward processes are distributed in the left hemisphere and the right occipital-temporal junction, whereas sensors related to feedback processes are distributed in the right hemisphere and the left cerebellar hemisphere. These results are in line with findings from a series of previous studies showing that specific brain regions are involved in feedforward and feedback control processes to plan, perform, and correct movements. Additionally, we looked at whether changes in movement direction modulate the neural interactions. Interestingly, we found a preponderance of sensors associated with changes in movement direction over the right hemisphere-ipsilateral to the moving hand. These sensors exhibit stronger coupling with the rest of the sensors for trajectory segments with high rather than low directional movement variability. We interpret these results as evidence that ipsilateral cortical regions are recruited for continuous movements when the curvature of the trajectory increases. To the best of our knowledge, this is the first study that shows how neural interactions are associated with a behavioral control parameter in continuous and sequential movements.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Magnetoencefalografia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Retroalimentação Fisiológica , Feminino , Mãos/fisiologia , Humanos , Masculino , Orientação/fisiologia , Estatística como Assunto , Adulto Jovem
3.
Neural Comput ; 23(10): 2511-36, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21732861

RESUMO

As we move, the relative location between our hands and objects changes in uncertain ways due to noisy motor commands and imprecise and ambiguous sensory information. The impressive capabilities humans display for interacting and manipulating objects with position uncertainty suggest that our brain maintains representations of location uncertainty and builds compensation for uncertainty into its motor control strategies. Our previous work demonstrated that specific control strategies are used to compensate for location uncertainty. However, it is an open question whether compensation for position uncertainty in grasping is consistent with the stochastic optimal feedback control, mainly due to the difficulty of modeling natural tasks within this framework. In this study, we develop a stochastic optimal feedback control model to evaluate the optimality of human grasping strategies. We investigate the properties of the model through a series of simulation experiments and show that it explains key aspects of previously observed compensation strategies. It also provides a basis for individual differences in terms of differential control costs-the controller compensates only to the extent that performance benefits in terms of making stable grasps outweigh the additional control costs of compensation. These results suggest that stochastic optimal feedback control can be used to understand uncertainty compensation in complex natural tasks like grasping.


Assuntos
Simulação por Computador , Força da Mão/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Incerteza , Humanos
4.
Neuron ; 109(9): 1554-1566.e4, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756104

RESUMO

New technologies are key to understanding the dynamic activity of neural circuits and systems in the brain. Here, we show that a minimally invasive approach based on ultrasound can be used to detect the neural correlates of movement planning, including directions and effectors. While non-human primates (NHPs) performed memory-guided movements, we used functional ultrasound (fUS) neuroimaging to record changes in cerebral blood volume with 100 µm resolution. We recorded from outside the dura above the posterior parietal cortex, a brain area important for spatial perception, multisensory integration, and movement planning. We then used fUS signals from the delay period before movement to decode the animals' intended direction and effector. Single-trial decoding is a prerequisite to brain-machine interfaces, a key application that could benefit from this technology. These results are a critical step in the development of neuro-recording and brain interface tools that are less invasive, high resolution, and scalable.


Assuntos
Intenção , Neuroimagem/métodos , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Ultrassonografia/métodos , Animais , Mapeamento Encefálico/métodos , Interfaces Cérebro-Computador , Macaca mulatta , Masculino , Movimento , Neuroimagem/instrumentação , Ultrassonografia/instrumentação
5.
PLoS Comput Biol ; 5(10): e1000538, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19834543

RESUMO

Due to noisy motor commands and imprecise and ambiguous sensory information, there is often substantial uncertainty about the relative location between our body and objects in the environment. Little is known about how well people manage and compensate for this uncertainty in purposive movement tasks like grasping. Grasping objects requires reach trajectories to generate object-fingers contacts that permit stable lifting. For objects with position uncertainty, some trajectories are more efficient than others in terms of the probability of producing stable grasps. We hypothesize that people attempt to generate efficient grasp trajectories that produce stable grasps at first contact without requiring post-contact adjustments. We tested this hypothesis by comparing human uncertainty compensation in grasping objects against optimal predictions. Participants grasped and lifted a cylindrical object with position uncertainty, introduced by moving the cylinder with a robotic arm over a sequence of 5 positions sampled from a strongly oriented 2D Gaussian distribution. Preceding each reach, vision of the object was removed for the remainder of the trial and the cylinder was moved one additional time. In accord with optimal predictions, we found that people compensate by aligning the approach direction with covariance angle to maintain grasp efficiency. This compensation results in higher probability to achieve stable grasps at first contact than non-compensation strategies in grasping objects with directional position uncertainty, and the results provide the first demonstration that humans compensate for uncertainty in a complex purposive task.


Assuntos
Força da Mão , Incerteza , Adulto , Feminino , Humanos , Masculino , Probabilidade
6.
Neuron ; 102(3): 694-705.e3, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30853300

RESUMO

Although animal studies provided significant insights in understanding the neural basis of learning and adaptation, they often cannot dissociate between different learning mechanisms due to the lack of verbal communication. To overcome this limitation, we examined the mechanisms of learning and its limits in a human intracortical brain-machine interface (BMI) paradigm. A tetraplegic participant controlled a 2D computer cursor by modulating single-neuron activity in the anterior intraparietal area (AIP). By perturbing the neuron-to-movement mapping, the participant learned to modulate the activity of the recorded neurons to solve the perturbations by adopting a target re-aiming strategy. However, when no cognitive strategies were adequate to produce correct responses, AIP failed to adapt to perturbations. These findings suggest that learning is constrained by the pre-existing neuronal structure, although it is possible that AIP needs more training time to learn to generate novel activity patterns when cognitive re-adaptation fails to solve the perturbations.


Assuntos
Interfaces Cérebro-Computador , Cognição/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Lobo Parietal/citologia , Quadriplegia/reabilitação , Adaptação Fisiológica/fisiologia , Vértebras Cervicais , Feminino , Humanos , Pessoa de Meia-Idade , Lobo Parietal/fisiologia , Traumatismos da Medula Espinal/reabilitação
7.
Sci Rep ; 8(1): 8611, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872059

RESUMO

Despite many years of intense research, there is no strong consensus about the role of the lateral intraparietal area (LIP) in decision making. One view of LIP function is that it guides spatial attention, providing a "saliency map" of the external world. If this were the case, it would contribute to target selection regardless of which action would be performed to implement the choice. On the other hand, LIP inactivation has been shown to influence spatial selection and oculomotor metrics in free-choice decisions, which are made using eye movements, arguing that it contributes to saccade decisions. To dissociate between a more general attention role and a more effector specific saccade role, we reversibly inactivated LIP while non-human primates freely selected between two targets, presented in the two hemifields, with either saccades or reaches. Unilateral LIP inactivation induced a strong choice bias to ipsilesional targets when decisions were made with saccades. Interestingly, the inactivation also caused a reduction of contralesional choices when decisions were made with reaches, albeit the effect was less pronounced. These findings suggest that LIP is part of a network for making oculomotor decisions and is largely effector-specific in free-choice decisions.


Assuntos
Tomada de Decisões , Lobo Parietal/fisiologia , Movimentos Sacádicos , Animais , Agonistas de Receptores de GABA-A/administração & dosagem , Haplorrinos , Muscimol/administração & dosagem
8.
Handb Clin Neurol ; 151: 163-182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29519457

RESUMO

Extinction is a common neurologic deficit that often occurs as one of a constellation of symptoms seen with lesions of the posterior parietal cortex (PPC). Although extinction has typically been considered a deficit in the allocation of attention, new findings, particularly from nonhuman primate studies, point to one potential and important source of extinction as damage to decision-making circuits for actions within the PPC. This new understanding provides clues to potential therapies for extinction. Also the finding that the PPC is important for action decisions and action planning has led to new neuroprosthetic applications using PPC recordings as control signals to assist paralyzed patients.


Assuntos
Tomada de Decisões/fisiologia , Lobo Parietal/fisiopatologia , Transtornos da Percepção/fisiopatologia , Animais , Humanos
9.
Front Neurosci ; 9: 60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852452

RESUMO

We investigated the cognitive mechanisms underlying the exploration and decision-making in realistic and novel environments. Twelve human subjects were shown small circular U.S. city maps with two locations highlighted on the circumference, as possible choices for a post office ("targets"). At the beginning of a trial, subjects fixated a spot at the center of the map and ultimately chose one of the two locations. A space syntax analysis of the map paths (from the center to each target) revealed that the chosen location was associated with the less convoluted path, as if subjects navigated mentally the paths in an "ant's way," i.e., by staying within street boundaries, and ultimately choosing the target that could be reached from the center in the shortest way, and the fewest turns and intersections. The subjects' strategy for map exploration and decision making was investigated by monitoring eye position during the task. This revealed a restricted exploration of the map delimited by the location of the two alternative options and the center of the map. Specifically, subjects explored the areas around the two target options by repeatedly looking at them before deciding which one to choose, presumably implementing an evaluation and decision-making process. The ultimate selection of a specific target was significantly associated with the time spent exploring the area around that target. Finally, an analysis of the sequence of eye fixations revealed that subjects tended to look systematically toward the target ultimately chosen even from the beginning of the trial. This finding indicates an early cognitive selection bias for the ensuing decision process.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa