Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 23(5)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693614

RESUMO

We report the synthesis and characterization of synthetic polymer aerogels based on dendritic-type urethane-norbornene monomers. The core of those monomers is based either on an aromatic/rigid (TIPM/Desmodur RE), or an aliphatic/flexible (Desmodur N3300) triisocyanate. The terminal norbornene groups (three at the tip of each of the three branches) were polymerized via ROMP using the inexpensive 1st generation Grubbs catalyst. The polymerization/gelation conditions were optimized by varying the amount of the catalyst. The resulting wet-gels were dried either from pentane under ambient pressure at 50 °C, or from t-butanol via freeze-drying, or by using supercritical fluid (SCF) CO2. Monomers were characterized with high resolution mass spectrometry (HRMS), ¹H- and solid-state 13C-NMR. Aerogels were characterized with ATR-FTIR and solid-state 13C-NMR. The porous network was probed with N2-sorption and SEM. The thermal stability of monomers and aerogels was studied with TGA, which also provides evidence for the number of norbornene groups that reacted via ROMP. At low densities (<0.1 g cm−3) all aerogels were highly porous (porosity > 90%), mostly macroporous materials; aerogels based on the aliphatic/flexible core were fragile, whereas aerogels containing the aromatic/rigid core were plastic, and at even lower densities (0.03 g cm−3) foamy. At higher densities (0.2⁻0.7 g cm−3) all materials were stiff, strong, and hard. At low monomer concentrations all aerogels consisted of discrete primary particles that formed spherical secondary aggregates. At higher monomer concentrations the structure consisted of fused particles with the size of the previous secondary aggregates, due to the low solubility of the developing polymer, which phase-separated and formed a primary particle network. Same-size fused aggregates were observed for both aliphatic and aromatic triisocyanate-derived aerogels, leading to the conclusion that it is not the aliphatic or aromatic core that determines phase separation, but rather the solubility of the polymeric backbone (polynorbornene) that is in both cases the same. The material properties were compared to those of analogous aerogels bearing only one norbornene moiety at the tip of each branch deriving from the same cores.


Assuntos
Norbornanos/química , Polímeros/síntese química , Uretana/química , Géis/síntese química , Géis/química , Estrutura Molecular , Tamanho da Partícula , Polímeros/química
2.
Polymers (Basel) ; 12(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370122

RESUMO

High-cis polydicyclopentadiene (PDCPD) aerogels were synthesized using ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) with a relatively air-stable ditungsten catalytic system, Na[W2(-Cl)3Cl4(THF)2]·(THF)3 (W2; (W 3 W)6+, a΄2e΄4), and norbornadiene (NBD)as a co-initiator. These aerogels are compared in terms of chemical structure and material properties with literature PDCPD aerogels obtained using well-established Ru-based alkylidenes as catalysts. The use of NBD as a co-initiator enhances the degree of crosslinking versus the more frequently used phenylacetylene (PA), yielding materials with a controlled molecular structure that would persist solvent swelling. Indeed, those PDCPD aerogels absorb selected organic solvents (e.g., chloroform, tetrahydrofuran) and swell rapidly, in some cases up to 4 times their original volume within 10 min, thus showing their potential for applications in chemical sensors and solvent-responsive actuators. The advantage of aerogels versus xerogels or dense polymers for these applications is their open porosity, which provides rapid access of the solvent to their interior, thus decreasing the diffusion distance inside the polymer itself, which in turn accelerates the response to the solvents of interest.

3.
Gels ; 6(4)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081053

RESUMO

In this work, a cellular automata (CA) approach was used to generate 3D structures of polyamide and carbon aerogels. Experimental results are used as initial data for materials' digital representations and to verify the developed CA models. Based on the generated digital structures, a computer study of aerogels' mechanical properties was conducted. The offered CA models can be applied for the development of new nanoporous materials such as aerogels of different nature and allow for a reduction in the amount of required full-scale experiments, consequently decreasing development time and costs of new material formulations.

4.
Materials (Basel) ; 12(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083421

RESUMO

Aerogels have been defined as solid colloidal or polymeric networks of nanoparticles that are expanded throughout their entire volume by a gas. They have high surface areas, low thermal conductivities, low dielectric constants, and high acoustic attenuation, all of which are very attractive properties for applications that range from thermal and acoustic insulation to dielectrics to drug delivery. However, one of the most important impediments to that potential has been that most efforts have been concentrated on monolithic aerogels, which are prone to defects and their production requires long and costly processing. An alternative approach is to consider manufacturing aerogels in particulate form. Recognizing that need, the European Commission funded "NanoHybrids", a 3.5 years project under the Horizon 2020 framework with 12 industrial and academic partners aiming at aerogel particles from bio- and synthetic polymers. Biopolymer aerogels in particulate form have been reviewed recently. This mini-review focuses on the emerging field of particulate aerogels from synthetic polymers. That category includes mostly polyurea aerogels, but also some isolated cases of polyimide and phenolic resin aerogels. Particulate aerogels covered include powders, micro granules and spherical millimeter-size beads. For the benefit of the reader, in addition to the literature, some new results from our laboratory concerning polyurea particle aerogels are also included.

5.
Gels ; 4(3)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30674842

RESUMO

We report the room temperature synthesis of spherical millimeter-size polyurea (PUA) aerogel beads. Wet-gels of said beads were obtained by dripping a propylene carbonate solution of an aliphatic triisocyanate based on isocyanurate nodes into a mixture of ethylenediamine and heavy mineral oil. Drying the resulting wet spherical gels with supercritical fluid (SCF) CO2 afforded spherical aerogel beads with a mean diameter of 2.7 mm, and a narrow size distribution (full width at half maximum: 0.4 mm). Spherical PUA aerogel beads had low density (0.166 ± 0.001 g cm⁻3), high porosity (87% v/v) and high surface area (197 m² g⁻1). IR, ¹H magic angle spinning (MAS) and 13C cross-polarization magic angle spinning (CPMAS) NMR showed the characteristic peaks of urea and the isocyanurate ring. Scanning electron microscopy (SEM) showed the presence of a thin, yet porous skin on the surface of the beads with a different (denser) morphology than their interior. The synthetic method shown here is simple, cost-efficient and suitable for large-scale production of PUA aerogel beads.

6.
Materials (Basel) ; 11(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424515

RESUMO

The purpose of this work was to investigate the effect of multifunctionality on material properties of synthetic polymer aerogels. For this purpose, we present the synthesis and characterization of monolithic dendritic-type urethane-acrylate monomers based on an aliphatic/flexible (Desmodur N3300), or an aromatic/rigid (Desmodur RE) triisocyanate core. The terminal acrylate groups (three at the tip of each of the three branches, nine in total) were polymerized with 2,2'-azobis(isobutyronitrile) (AIBN) via free radical chemistry. The resulting wet-gels were dried with supercritical fluid (SCF) CO2. Aerogels were characterized with ATR-FTIR and solid-state 13C NMR. The porous network was probed with N2-sorption and scanning electron microscopy (SEM). The thermal stability of aerogels was studied with thermogravimetric analysis (TGA). Most aerogels were macroporous materials (porosity > 80%), with high thermal stability (up to 300 °C). Aerogels were softer at low monomer concentrations and more rigid at higher concentrations. The material properties were compared with those of analogous aerogels bearing only one acrylate moiety at the tip of each branch and the same cores, and with those of analogous aerogels bearing norbornene instead of acrylate moieties. The nine-terminal acrylate-based monomers of this study caused rapid decrease of the solubility of the growing polymer and made possible aerogels with much smaller particles and much higher surface areas. For the first time, aliphatic/flexible triisocyanate-based materials could be made with similar properties in terms of particle size and surface areas to their aromatic/rigid analogues. Finally, it was found that with monomers with a high number of crosslinkable groups, material properties are determined by multifunctionality and thus aerogels based on 9-acrylate- and 9-norbornene-terminated monomers were similar. Materials with aromatic cores are carbonizable with satisfactory yields (20⁻30% w/w) to mostly microporous materials (BET surface areas: 640⁻740 m² g-1; micropore surface areas: 360⁻430 m² g-1).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa