Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(15): 6425-6431, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313133

RESUMO

GaN wurtzite crystal is commonly regarded as eminently brittle. However, our research demonstrates that nanodeconfined GaN compressed along the M direction begins to exhibit room-temperature plasticity, yielding a dislocation-free structure despite the occurrence of considerable, irreversible deformation. Our interest in M-oriented, strained GaN nanoobjects was sparked by the results of first-principles bandgap calculations, whereas subsequent nanomechanical tests and ultrahigh-voltage (1250 kV) transmission electron microscopy observations confirmed the authenticity of the phenomenon. Moreover, identical experiments along the C direction produced only a quasi-brittle response. Precisely how this happens is demonstrated by molecular dynamics simulations of the deformation of the C- and M-oriented GaN frustum, which mirror our nanopillar crystals.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124414, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759573

RESUMO

On the basis of first-principles electronic structure calculations, crystallographic parameters have been refined for calcium hydroxozincate (Qatranaite mineral), and the vibration properties (frequencies and eigenvectors) calculated. A detailed analysis of vibration modes is done, in the context of comparison with infrared and Raman spectra previously available. Special attention is paid to a posteriori symmetry analysis of vibration modes, discussing the latters' attribution to four irreducible representations of the P21/c space group, and to identifying stretchings and bendings of particular chemical bonds, pronounced in different vibrations. It turns out that high-frequency (>700 cm-1) vibrations of hydroxyl groups bridging the Ca or Zn cations differ quite considerably for crystallographically distinct hydroxyl positions. It is shown that the vibrations involving hydroxyl groups and crystalline water typically come about in quadruplets at very close frequencies, whereby different irreducible representations reflect different combinations of similar "molecular" vibrations of four identical entities (of each hydroxyl or water) present in the unit cell. However, some vibrations show exceptions from this rule. In addition to interpretation of earlier experimental investigations, our study indicates that the low-frequency (<700 cm-1) vibrations within the cation-hydroxyl connected skeleton are of more "solid-state-like" character and cannot be reasonably interpreted in terms of "molecular" vibrations within ZnO4 or CaO6 units.

3.
Materials (Basel) ; 15(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35888426

RESUMO

Classical modeling of structural phenomena occurring in InP crystal, for example plastic deformation caused by contact force, requires an interatomic interaction potential that correctly describes not only the elastic properties of indium phosphide but also the pressure-induced reversible phase transition B3↔B1. In this article, a new parametrization of the analytical bond-order potential has been developed for InP. The potential reproduces fundamental physical properties (lattice parameters, cohesive energy, stiffness coefficients) of the B3 and B1 phases in good agreement with first-principles calculations. The proposed interaction model describes the reversibility of the pressure-induced B3↔B1 phase transition as well as the formation of native point defects in the B3 phase.

4.
Materials (Basel) ; 15(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897531

RESUMO

Nanoindentations and the Raman spectroscopy measurements were carried out on the (001) surface of undoped and S-doped InP crystal. The samples were indented with the maximum load ranging from 15 mN to 100 mN. The phase transition B3→B1 was not confirmed by spectroscopic experiments, indicating a plastic deformation mechanism governed by dislocations activity. Increasing the maximum indentation load shifts and the longitudinal and transverse optical Raman bands to lower frequencies reveals a reduction in the elastic energy stored in the plastic zone right below the indentation imprint. Mechanical experiments have shown that a shift in Raman bands occurs alongside the indentation size effect. Indeed, the hardness of undoped and S-doped InP crystal decreases as a function of the maximum indentation load.

5.
Materials (Basel) ; 15(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35160787

RESUMO

Investigated the structural, electronic, and magnetic properties of copper pyrophosphate dihydrate (CuPPD) by the first-principle calculations based on the density functional theory (DFT). Simulations were performed with the generalized gradient approximation (GGA) of the exchange-correlation functional (Exc) supplemented by an on-site Coulomb self-interaction (U-Hubbard term). It was confirmed that the GGA method did not provide a satisfactory result in predicting the electronic energy band gap width (Eg) of the CuPPD crystals. Simultaneously, we measured the Eg of CuPPD nanocrystal placed inside mesoporous silica using the ultraviolet-visible spectroscopy (UV-VIS) technique. The proposed Hubbard correction for Cu-3d and O-2p states at U = 4.64 eV reproduces the experimental value of Eg = 2.34 eV. The electronic properties presented in this study and the results of UV-VIS investigations likely identify the semiconductor character of CuPPD crystal, which raises the prospect of using it as a component determining functional properties of nanomaterials, including quantum dots.

6.
Materials (Basel) ; 15(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009538

RESUMO

The presented work was focused on investigating the influence of the (hafnium and zirconium)/molybdenum ratio on the microstructure and properties of Ti20Ta20Nb20(ZrHf)20-xMox (where: x = 0, 5, 10, 15, 20 at.%) high entropy alloys in an as-cast state. The designed chemical composition was chosen due to possible future biomedical applications. Materials were obtained from elemental powders by vacuum arc melting technique. Phase analysis revealed the presence of dual body-centered cubic phases. X-ray diffraction showed the decrease of lattice parameters of both phases with increasing molybdenum concentration up to 10% of molybdenum and further increase of lattice parameters. The presence of two-phase matrix microstructure and hafnium and zirconium precipitates was proved by scanning and transmission electron microscopy observation. Mechanical property measurements revealed decreased micro- and nanohardness and reduced Young's modulus up to 10% of Mo content, and further increased up to 20% of molybdenum addition. Additionally, corrosion resistance measurements in Ringers' solution confirmed the high biomedical ability of studied alloys due to the presence of stable oxide layers.

7.
Materials (Basel) ; 14(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34361350

RESUMO

With classical molecular dynamics simulations, we demonstrated that doping of the InP crystal with Zn and S atoms reduces the pressure of the B3→B1 phase transformation as well as inhibits the development of a dislocation structure. On this basis, we propose a method for determining the phenomenon that initiates nanoscale plasticity in semiconductors. When applied to the outcomes of nanoindentation experiments, it predicts the dislocation origin of the elastic-plastic transition in InP crystal and the phase transformation origin of GaAs incipient plasticity.

8.
Materials (Basel) ; 14(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066302

RESUMO

This paper refers to the structural and magnetic properties of [(Fe80Nb6B14)0.88Dy0.12]1-xZrx (x = 0; 0.01; 0.02; 0.05; 0.1; 0.2; 0.3; 0.5) alloys obtained by the vacuum mold suction casting method. The analysis of the phase contribution indicated a change in the compositions of the alloys. For x < 0.05, occurrence of the dominant Dy2Fe14B phase was observed, while a further increase in the Zr content led to the increasing contribution of the Fe-Zr compounds and, simultaneously, separation of crystalline Dy. The dilution of (Fe80Nb6B14)0.88Dy0.12 in Zr strongly influenced the magnetization processes of the examined alloys. Generally, with the increasing x parameter, we observed a decrease in coercivity; however, the unexpected increase in magnetic saturation and remanence for x = 0.2 and x = 0.3 was shown and discussed.

9.
Materials (Basel) ; 14(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809561

RESUMO

The paper refers to Monte Carlo magnetic simulations for fractal-like nano and mesoscopic grains. The analyzed objects differed in the size, surface development, magnetic anisotropy and the spin values attributed to the system nodes inside the fractal. Such an approach allowed us to determine their magnetization processes as well as optimization characteristics in the direction to enhancement of hard magnetic properties. As it was shown, the size effects depend on the chosen value of magnetic anisotropy. In the case of fractals with ultra-high coercivity, the decreasing of their size leads to deterioration of coercivity, especially for the high surface to volume ratio. Opposite effects were observed for soft magnetic fractals when the nanostructure caused an appearance of the coercive field, and the maximum of energy product was predictably significantly higher than for conventional rare earths' free permanent magnets.

10.
Materials (Basel) ; 13(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825650

RESUMO

This paper refers to Monte Carlo magnetic simulations for large-scale systems. We propose scaling rules to facilitate analysis of mesoscopic objects using a relatively small amount of system nodes. In our model, each node represents a volume defined by an enlargement factor. As a consequence of this approach, the parameters describing magnetic interactions on the atomic level should also be re-scaled, taking into account the detailed thermodynamic balance as well as energetic equivalence between the real and re-scaled systems. Accuracy and efficiency of the model have been depicted through analysis of the size effects of magnetic moment configuration for various characteristic objects. As shown, the proposed scaling rules, applied to the disorder-based cluster Monte Carlo algorithm, can be considered suitable tools for designing new magnetic materials and a way to include low-level or first principle calculations in finite element Monte Carlo magnetic simulations.

11.
Nat Nanotechnol ; 6(8): 480-4, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785429

RESUMO

Silicon crystals have an important role in the electronics industry, and silicon nanoparticles have applications in areas such as nanoelectromechanical systems, photonics and biotechnology. However, the elastic-plastic transition observed in silicon is not fully understood; in particular, it is not known if the plasticity of silicon is determined by dislocations or by transformations between phases. Here, based on compression experiments and molecular dynamics simulations, we show that the mechanical properties of bulk silicon and silicon nanoparticles are significantly different. We find that bulk silicon exists in a state of relative constraint, with its plasticity dominated by phase transformations, whereas silicon nanoparticles are less constrained and display dislocation-driven plasticity. This transition, which we call deconfinement, can also explain the absence of phase transformations in deformed silicon nanowedges. Furthermore, the phenomenon is in agreement with effects observed in shape-memory alloy nanopillars, and provides insight into the origin of incipient plasticity.


Assuntos
Simulação de Dinâmica Molecular , Nanopartículas/química , Silício/química , Elasticidade , Mecânica , Nanotecnologia , Transição de Fase
12.
Nat Nanotechnol ; 4(5): 287-91, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19421212

RESUMO

The increase in semiconductor conductivity that occurs when a hard indenter is pressed into its surface has been recognized for years, and nanoindentation experiments have provided numerous insights into the mechanical properties of materials. In particular, such experiments have revealed so called pop-in events, where the indenter suddenly enters deeper into the material without any additional force being applied; these mark the onset of the elastic-plastic transition. Here, we report the observation of a current spike--a sharp increase in electrical current followed by immediate decay to zero at the end of the elastic deformation--during the nanoscale deformation of gallium arsenide. Such a spike has not been seen in previous nanoindentation experiments on semiconductors, and our results, supported by ab initio calculations, suggest a common origin for the electrical and mechanical responses of nanodeformed gallium arsenide. This leads us to the conclusion that a phase transition is the fundamental cause of nanoscale plasticity in gallium arsenide, and the discovery calls for a revision of the current dislocation-based understanding of nanoscale plasticity.


Assuntos
Arsenicais/química , Gálio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Módulo de Elasticidade , Campos Eletromagnéticos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa