Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Langmuir ; 40(10): 5245-5254, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408434

RESUMO

Surface modification through dopamine-assisted codeposition with functional zwitterionic polymers can provide a simple and one-step functionalization under ambient conditions with robust and stable dopamine-surface interactions to improve the hydrophilicity of nanoporous membranes, thereby expanding their applicability to nanofiltration, ion transport, and blood purification. However, a significant knowledge gap remains in our comprehension of the mechanisms underlying the formation and deposition of dopamine/polymer aggregated coatings within nanoscale confinement. This study explores a feasible method for membrane modification through the codeposition of dopamine hydrochloride (DA) and poly(sulfobetaine methacrylate) (PSBMA) on nanopores of anodic aluminum oxide (AAO) membranes. Our findings demonstrate that the aggregated coatings of DA and PSBMA nanocomposites can effectively deposit on the surfaces within cylindrical AAO nanopores, significantly enhancing the hydrophilicity of the nanoporous membranes. The morphology and homogeneity of the nanocomposite coatings within the nanopores are further investigated by varying PSBMA molecular weights and AAO pore sizes, revealing that higher molecular weights result in more uniform deposition. This work sheds light on understanding the codeposition of DA and zwitterionic polymers in nanoscale environments, highlighting a straightforward and stable surface modification process of nanoporous membranes involving functional polymers.

2.
Angew Chem Int Ed Engl ; 62(26): e202303582, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37010943

RESUMO

The design of ion-selective membranes is the key towards efficient reverse electrodialysis-based osmotic power conversion. The tradeoff between ion selectivity (output voltage) and ion permeability (output current) in existing porous membranes, however, limits the upgradation of power generation efficiency for practical applications. Thus, we provide the simple guidelines based on fundamentals of ion transport in nanofluidics for promoting osmotic power conversion. In addition, we discuss strategies for optimizing membrane performance through analysis of various material parameters in membrane design, such as pore size, surface charge, pore density, membrane thickness, ion pathway, pore order, and ionic diode effect. Lastly, a perspective on the future directions of membrane design to further maximize the efficiency of osmotic power conversion is outlined.


Assuntos
Permeabilidade , Transporte de Íons , Porosidade
3.
Biomacromolecules ; 21(6): 2125-2131, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32315168

RESUMO

A hydrolysis-resistant polymer bearing new quasi-choline phosphate (quasi-CP) structures as side groups, poly(2-methacryloyloxyethyl choline methylphosphonate) (PMCPm), was designed and synthesized. Radical polymerization and sub-surface-initiated radical polymerization were used to prepare homopolymer and polymer brush on polymer substrates. Hydrolytic stability and hydrophilicity of the polymer were confirmed by nuclear magnetic resonance and contact angle measurements. Furthermore, the hydration states were investigated using Fourier-transform infrared spectroscopy and differential scanning calorimetry. The similar hydration behavior of PMCPm to poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) sheds light on understanding the interfacial functions of quasi-CP-bearing zwitterionic biomaterials.


Assuntos
Fosforilcolina , Polímeros , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Ácidos Polimetacrílicos , Propriedades de Superfície
4.
Soft Matter ; 15(41): 8201-8209, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31588459

RESUMO

In this work, we study the structure transformations of cylinder-forming polystyrene-block-polydimethylsiloxane (PS31k-b-PDMS14.5k) confined in cylindrical nanopores. PS-b-PDMS nanotubes, nanospheres, and curved nanodiscs are ingeniously prepared by a facile template wetting strategy using anodic aluminum oxide (AAO) templates. Quantitative analyses of the structure transformations from nanospheres to curved nanodiscs are also conducted, showing that the lengths of the curved nanodiscs can be controlled by adjusting the annealing temperature and time. Furthermore, the PDMS domains of the nanostructures can be selectively etched using HF solutions, generating porous PS nanostructures. This work not only offers versatile routes to prepare block copolymer nanostructures with controlled shapes but also provides a deeper understanding of the structure transformation of block copolymers in confined geometries.

5.
Langmuir ; 34(25): 7472-7478, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29804459

RESUMO

Hierarchical structures are commonly observed in nature and possess unique properties. The fabrication of hierarchical structures with well-controlled sizes in different length scales, however, is still a great challenge. To further understand the morphologies and properties of the hierarchical structures, here we present a novel strategy to prepare hierarchical polymer structures by combining the modified breath figure method and the template method. Poly(methyl methacrylate) (PMMA) honeycomb films with regular micropores are first prepared using the modified breath figure method by dipping PMMA films into mixtures of chloroform and methanol. The polymer chains on the honeycomb films are then annealed and wetted into the nanopores of anodic aluminum oxide templates via capillary forces, resulting in the formation of hierarchical polymer structures. The morphologies of the polymer structures, which can be controlled by the molecular weights of the polymers and the concentrations of the polymer solutions, are characterized by scanning electron microscopy. The surface wettabilities of the polymer structures are also examined by water contact angle measurements, and the hierarchical structures are observed to be more hydrophobic than the flat films and honeycomb films. This work not only provides a feasible approach to fabricate hierarchical polymer structures with controlled sizes but also gives a better understanding of the relationship between surface morphologies and properties.

6.
Soft Matter ; 14(15): 2772-2776, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29620121

RESUMO

We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

7.
Soft Matter ; 14(1): 35-41, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29210440

RESUMO

Block copolymers have attracted great attention because of their abilities to self-assemble into well-ordered microphase-separated structures. To generate nanopatterns of block copolymers with long-range ordering and low-defect densities in shorter time scales, microwave annealing has recently been applied. Microwave annealing, however, has so far only been used for block copolymer bulks and thin films. In this work, we discover that microwave annealing can be successfully applied to three-dimensional block copolymer nanostructures by studying the infiltration and microphase separation of block copolymers in cylindrical nanopores upon microwave irradiation. Cylinder-forming and lamella-forming poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) are introduced into the nanopores of anodic aluminum oxide (AAO) templates. In addition, AAO templates with different pore sizes are used to study the effect of the commensurabilities between the pore diameters and the repeating periods of the block copolymers on the morphologies of the block copolymer nanostructures.

8.
Macromol Rapid Commun ; 37(3): 239-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26574243

RESUMO

The fabrication of electrospun polymer fibers is demonstrated with anisotropic cross-sections by applying a simple pressing method. Electrospun polystyrene or poly(methyl methacrylate) fibers are pressed by flat or patterned substrates while the samples are annealed at elevated temperatures. The shapes and morphologies of the pressed polymer fibers are controlled by the experimental conditions such as the pressing force, the pressing temperature, the pressing time, and the surface pattern of the substrate. At the same pressing force, the shape changes of the polymer fibers can be controlled by the pressing time. For shorter pressing times, the deformation process is dominated by the effect of pressing and fibers with barrel-shaped cross-sections can be generated. For longer pressing times, the effect of wetting becomes more important and fibers with dumbbell-shaped cross-sections can be obtained. Hierarchical polymer fibers with nanorods are fabricated by pressing the fibers with porous anodic aluminum oxide templates.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Óxido de Alumínio/química , Anisotropia , Eletrodos , Microscopia Eletrônica de Varredura , Poliestirenos/química
9.
J Air Waste Manag Assoc ; 62(5): 527-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22696803

RESUMO

UNLABELLED: Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. For sustainable MSWM strategies, the critical management factors to be considered include not only economic efficiency of MSW treatment but also life-cycle assessment of the environmental impact. This paper employed linear programming technique to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of a MSWM system, and investigated the correlations between the economical optimization and pollutant emissions. A case study based on real-world MSW operating parameters in Taichung City is also presented. The results showed that the costs, benefits, streams of MSW, and throughputs of incinerators and landfills will be affected if pollution emission reductions are implemented in the MSWM strategies. In addition, the quantity of particulate matter is the best pollutant indicator for the MSWM system performance of emission reduction. In particular this model will assist the decision maker in drawing up a friendly MSWM strategy for Taichung City in Taiwan. IMPLICATIONS: Recently, life-cycle assessments of municipal solid waste management (MSWM) strategies have been given more considerations. However, what seems to be lacking is the consideration of economic factors and environmental impacts simultaneously. This work analyzed real-world data to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of the MSWM system. The results indicated that the consideration of environmental impacts will affect the costs, benefits, streams of MSW, and throughputs of incinerators and landfills. This work is relevant to public discussion and may establish useful guidelines for the MSWM policies.


Assuntos
Poluentes Atmosféricos/análise , Recuperação e Remediação Ambiental/economia , Modelos Lineares , Gerenciamento de Resíduos/economia , Poluentes Atmosféricos/economia , Cidades , Meio Ambiente , Monitoramento Ambiental , Recuperação e Remediação Ambiental/métodos , Incineração , Óxidos/análise , Material Particulado/análise , Reciclagem , Eliminação de Resíduos , Taiwan , Gerenciamento de Resíduos/métodos
10.
ACS Omega ; 5(13): 7488-7496, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32280892

RESUMO

Surface functionalization tailors the interfacial properties without impacts on the mechanical strength, which is beneficial for industry and daily applications of various metallic materials. Herein, a two-step surface functionalization strategy, (1) catechol-mediated immobilization of clickable agent and (2) postfunctionalization based on thiol-ene click reaction, is achieved using a copolymer, namely poly[2-(methacryloyloxy)ethylundec-10-enoate]-co-(N-(3,4-dihydroxyphenethyl) methacrylamide) [P(MEUE-co-DPMAm)]. To reduce the potential side reactions of allylic double bonds in allyl methacrylate during the polymerization, the MEUE are designed and synthesized with better control over the polymer chain growth. The surface functionalization via the two-step method is demonstrated using various thiols, e.g., hydrophobic, hydrophilic, and polymeric thiols under room conditions. Additionally, the hydrophobic-thiol-functionalized anodic aluminum oxide is found to be a candidate for the oil/water separation with a separation efficiency of ∼99.2%. This surface modifier provides practical insights into the further design of functional materials.

11.
J Hazard Mater ; 156(1-3): 223-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18207636

RESUMO

Large-scale open burning of joss paper is an important ritual practice for deity worshipping during Buddhist and Taoist festivals. Since Buddhism and Taoism are two of the most popular religions in Chinese societies and some Asian countries, the impact of joss paper burning on the air quality needs further investigation. This study explores the concentrations of polycyclic aromatic hydrocarbons (PAHs) in ambient air during one of the most important festivals, in which large-scale burning of joss paper occurs in temples and in people's houses. The PAH concentrations were measured simultaneously at a temple site and a background site during both the festival and non-festive (ordinary) periods. Each ambient sample was extracted by the Soxhlet analytical method (for both particle-bound and gas-phase) and analyzed with gas chromatography. Experimental results indicate that the total PAH concentration during the festival period is approximately 4.2 times higher than that during the ordinary period (5384 ng m(-3) vs. 1275 ng m(-3)). This study also employed statistical methods including diagnostic ratios and principal component analysis (PCA) to identify the possible PAH emission sources. Joss paper burning and vehicular emissions are identified as the principal sources of airborne PAHs during the large-scale open-burning event. The results of this work provide useful information for public awareness concerning PAH emission from the open burning of joss paper.


Assuntos
Poluentes Atmosféricos/análise , Papel , Compostos Policíclicos/análise
12.
ACS Macro Lett ; 4(7): 717-720, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35596494

RESUMO

Spherical core-shell structures have been widely investigated in recent years, and they can be used for various applications, such as drug delivery, biological labeling, and batteries. Although many methods have been developed to prepare core-shell structures, it is still a great challenge to fabricate core-shell structures in the nanoscale with well-controlled morphologies and sizes. In this work, we present a simple method to fabricate core-shell polymer nanospheres consisting of polystyrene (PS) cores and poly(methyl methacrylate) (PMMA) shells. The nanostructures are prepared by a solution-based template wetting method. After the nanopores of anodic aluminum oxide (AAO) templates are wetted sequentially by PS/PMMA blend solutions and water, the core-shell nanostructures can be formed. The formation process is related to the Rayleigh-instability-type transformation. Selective removal techniques are also used to confirm the morphologies of the core-shell nanostructures.

13.
ACS Appl Mater Interfaces ; 5(8): 3134-42, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23514621

RESUMO

We study the thermal annealing effect of poly(methyl methacrylate) (PMMA) nanofibers made from anodic aluminum oxide (AAO) templates and their transformation to PMMA nanospheres. The PMMA nanofibers are prepared by wetting an AAO template with a 30 wt % PMMA solution, followed by the evaporation of the solvent. After the AAO template is removed by a weak base, the PMMA nanofibers are thermally annealed in ethylene glycol, a nonsolvent for PMMA. The surfaces of the nanofibers undulate and transform into nanospheres, driven by the Rayleigh instability. The driving force for the transformation process is the minimization of the interfacial energy between PMMA nanofibers and ethylene glycol. The transformation times at higher annealing temperatures are shorter than those at lower annealing temperatures. This study provides a facile route to prepare polymer nanospheres which are not accessible by other traditional methods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa