Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Am Chem Soc ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008121

RESUMO

Hemoproteins have recently emerged as powerful biocatalysts for new-to-nature carbene transfer reactions. Despite this progress, these strategies have remained largely limited to diazo-based carbene precursor reagents. Here, we report the development of a biocatalytic strategy for the stereoselective construction of pyridine-functionalized cyclopropanes via the hemoprotein-mediated activation of pyridotriazoles (PyTz) as stable and readily accessible carbene sources. This method enables the asymmetric cyclopropanation of a variety of olefins, including electron-rich and electrodeficient ones, with high activity, high stereoselectivity, and enantiodivergent selectivity, providing access to mono- and diarylcyclopropanes that incorporate a pyridine moiety and thus two structural motifs of high value in medicinal chemistry. Mechanistic studies reveal a multifaceted role of 7-halogen substitution in the pyridotriazole reagent toward favoring multiple catalytic steps in the transformation. This work provides the first example of asymmetric olefin cyclopropanation with pyridotriazoles, paving the way to the exploitation of these attractive and versatile reagents for enzyme-catalyzed carbene-mediated reactions.

2.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741453

RESUMO

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Assuntos
Inflamassomos , Toxoplasma , Camundongos , Animais , Humanos , Feminino , Gravidez , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Trofoblastos/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Placenta/metabolismo , RNA Interferente Pequeno , Caspases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas NLR/metabolismo
3.
Chemistry ; 30(2): e202303175, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37793067

RESUMO

Carbon-centered radicals stabilized by adjacent boron atoms are underexplored reaction intermediates in organic synthesis. This study reports the development of vinyl cyclopropyl diborons (VCPDBs) as a versatile source of previously unknown homoallylic α,α-diboryl radicals via thiyl radical catalyzed diboron-directed ring opening. These diboryl stabilized radicals underwent smooth [3+2] cycloaddition with a variety of olefins to provide diboryl cyclopentanes in good to excellent diastereoselectivity. In contrast to the trans-diastereoselectivity observed with most of the dicarbonyl activated VCPs, the cycloaddition of VCPDBs showed a remarkable preference for formation of cis-cyclopentane diastereomer which was confirmed by quantitative NOE and 2D NOESY studies. The cis-stereochemistry of cyclopentane products enabled a concise intramolecular Heck reaction approach to rare tricyclic cyclopentanoid framework containing the diboron group. The mild reaction conditions also allowed a one-pot VCP ring-opening, cycloaddition-oxidation sequence to afford disubstituted cyclopentanones. Control experiments and DFT analysis of reaction mechanism support a radical mediated pathway and provide a rationale for the observed diastereoselectivity. To the authors' knowledge, these are the first examples of the use of geminal diboryl group as an activator of VCP ring opening and cycloaddition reaction of α-boryl radicals.

4.
Inorg Chem ; 63(7): 3586-3598, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307037

RESUMO

Nitroxyl (HNO) exhibits unique favorable properties in regulating biological and pharmacological activities. However, currently, there is only one Cu-based HNO sensor that can be recycled for reusable detection, which is a Cu cyclam derivative with a mixed thia/aza ligand. To elucidate the missing mechanistic origin of its high HNO reactivity and subsequent favorable conformation change toward a stable CuI product that is critical to be oxidized back by the physiological O2 level for HNO detection again, a density functional theory (DFT) computational study was performed. It not only reproduced experimental structural and reaction properties but also, more importantly, revealed an unknown role of the coordination atom in high reactivity. Its conformation change mechanism was found to not follow the previously proposed one but involve a novel favorable rotation pathway. Several newly designed complexes incorporating beneficial effects of coordination atoms and substituents to further enhance HNO reactivity while maintaining or even improving favorable conformation changes for reusable HNO detection were computationally validated. These novel results will facilitate the future development of reusable HNO sensors for true spatiotemporal resolution and repeated detection.

5.
Inorg Chem ; 63(17): 7705-7713, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38620065

RESUMO

Herein, three In(III)-based metal-organic frameworks (In-MOFs) with different degrees of interpenetration (DOI), namely In-MOF-1, In-MOF-2, and In-MOF-3, constructed by In3+ and Y-shaped ligands 4,4',4″-s-triazine-2,4,6-triyltribenzoate (H3TATB), are successfully synthesized through the ionothermal/solvothermal method. Subsequently, three novel In-MOFs, including noninterpenetration polycatenation, 2-fold interpenetrated, and 4-fold interpenetrated structure, are employed as the platform for systematically investigating the separation efficiency of CO2/N2, CO2/CH4, and CO2/CH4/N2 mixture gas system. Among them, In-MOF-2 shows the highest CO2 uptake capacities at 298 K and simultaneously possesses the low adsorption enthalpy of CO2 (26.4 kJ/mol at low coverage), a feature desirable for low-energy-cost adsorbent regeneration. The CO2/N2 (v: v = 15/85) selectivity of In-MOF-2 reaches 37.6 (at 298 K and 1 bar), also revealing outstanding selective separation ability from flue gases and purifying natural gas, affording a unique robust separation material as it has moderate DOI and pore size. In-MOF-2 shows exceptional stability and feasibility to achieve reproducibility. Aperture adjustment makes In-MOF-2 a versatile platform for selectively capturing CO2 from flue gases or purifying natural gas.

6.
Acta Pharmacol Sin ; 45(6): 1287-1304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360930

RESUMO

HER2-positive (HER2+) metastatic breast cancer (mBC) is highly aggressive and a major threat to human health. Despite the significant improvement in patients' prognosis given the drug development efforts during the past several decades, many clinical questions still remain to be addressed such as efficacy when combining different therapeutic modalities, best treatment sequences, interindividual variability as well as resistance and potential coping strategies. To better answer these questions, we developed a mechanistic quantitative systems pharmacology model of the pathophysiology of HER2+ mBC that was extensively calibrated and validated against multiscale data to quantitatively predict and characterize the signal transduction and preclinical tumor growth kinetics under different therapeutic interventions. Focusing on the second-line treatment for HER2+ mBC, e.g., antibody-drug conjugates (ADC), small molecule inhibitors/TKI and chemotherapy, the model accurately predicted the efficacy of various drug combinations and dosing regimens at the in vitro and in vivo levels. Sensitivity analyses and subsequent heterogeneous phenotype simulations revealed important insights into the design of new drug combinations to effectively overcome various resistance scenarios in HER2+ mBC treatments. In addition, the model predicted a better efficacy of the new TKI plus ADC combination which can potentially reduce drug dosage and toxicity, while it also shed light on the optimal treatment ordering of ADC versus TKI plus capecitabine regimens, and these findings were validated by new in vivo experiments. Our model is the first that mechanistically integrates multiple key drug modalities in HER2+ mBC research and it can serve as a high-throughput computational platform to guide future model-informed drug development and clinical translation.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Feminino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Farmacologia em Rede , Modelos Biológicos , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Camundongos , Linhagem Celular Tumoral , Metástase Neoplásica
7.
Chembiochem ; 24(17): e202300260, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37134298

RESUMO

Engineered heme proteins were developed to possess numerous excellent biocatalytic nitrenoid C-H functionalizations. Computational approaches such as density functional theory (DFT), hybrid quantum mechanics/molecular mechanics (QM/MM), and molecular dynamics (MD) calculations were employed to help understand some important mechanistic aspects of these heme nitrene transfer reactions. This review summarizes advances of computational reaction pathway results of these biocatalytic intramolecular and intermolecular C-H aminations/amidations, focusing on mechanistic origins of reactivity, regioselectivity, enantioselectivity, diastereoselectivity as well as effects of substrate substituent, axial ligand, metal center, and protein environment. Some important common and distinctive mechanistic features of these reactions were also described with brief outlook of future development.


Assuntos
Hemeproteínas , Biocatálise , Simulação de Dinâmica Molecular , Heme/química , Aminação
8.
Radiographics ; 43(7): e220209, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319026

RESUMO

Small solid renal masses (SRMs) are frequently detected at imaging. Nearly 20% are benign, making careful evaluation with MRI an important consideration before deciding on management. Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype with potentially aggressive behavior. Thus, confident identification of ccRCC imaging features is a critical task for the radiologist. Imaging features distinguishing ccRCC from other benign and malignant renal masses are based on major features (T2 signal intensity, corticomedullary phase enhancement, and the presence of microscopic fat) and ancillary features (segmental enhancement inversion, arterial-to-delayed enhancement ratio, and diffusion restriction). The clear cell likelihood score (ccLS) system was recently devised to provide a standardized framework for categorizing SRMs, offering a Likert score of the likelihood of ccRCC ranging from 1 (very unlikely) to 5 (very likely). Alternative diagnoses based on imaging appearance are also suggested by the algorithm. Furthermore, the ccLS system aims to stratify which patients may or may not benefit from biopsy. The authors use case examples to guide the reader through the evaluation of major and ancillary MRI features of the ccLS algorithm for assigning a likelihood score to an SRM. The authors also discuss patient selection, imaging parameters, pitfalls, and areas for future development. The goal is for radiologists to be better equipped to guide management and improve shared decision making between the patient and treating physician. © RSNA, 2023 Quiz questions for this article are available in the supplemental material. See the invited commentary by Pedrosa in this issue.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/patologia , Imageamento por Ressonância Magnética/métodos , Diagnóstico Diferencial , Estudos Retrospectivos
9.
Macromol Rapid Commun ; 44(11): e2200641, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36382386

RESUMO

Oily water caused in the process of industry leads to not only the waste of resources, but also environmental pollution. Membrane separation, as a facile and efficient separation technology, has attracted widespread attention in the field of oil/water separation. The development of membrane materials with high separation performance is one of the key elements to improve separation efficiency. In this work, a superhydrophobic membrane composited with a trifluoromethyl-containing covalent organic framework (COF) is prepared, which exhibits excellent performance on separations of oil/water mixtures and water-in-oil emulsions. For different composition of oil/water mixtures, the highest flux of oil is up to 32 000 L m-2  h-1 and oil/water separation efficiency is above 99%. Moreover, the high oil/water separation efficiency remains unchanged after successive cycles. This work provides a feasible scheme for the design of high-efficiency oil/water separation membranes.


Assuntos
Estruturas Metalorgânicas , Membranas , Poluição Ambiental , Tecnologia , Interações Hidrofóbicas e Hidrofílicas
10.
Altern Ther Health Med ; 29(8): 534-539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678850

RESUMO

Purpose: To study the risk factors affecting amputation and survival in patients with diabetic foot (DF) and to construct a predictive model using the machine learning technique for DF foot amputation and survival and evaluate its effectiveness. Materials and Methods: A total of 200 patients with DF hospitalized in the First Affiliated Hospital of Shantou University Medical College in China were selected via cluster analysis screening, Kaplan-Meier survival calculation, amputation rate and Cox proportional hazards model investigation of risk factors associated with amputation and death. In addition, we constructed various models, including Cox proportional hazards regression analysis, the deep learning method convolution neural network (CNN) model, backpropagation (BP) neural network model, and backpropagation neural network prediction model after optimizing the genetic algorithm. The accuracy of the 4 prediction models for survival and amputation was assessed, and we evaluated the reliability of these computational models based on the size of the area under the ROC curve (AUC), sensitivity and specificity. Results: We found that the 1-year survival rate in patients with DF was 88.5%, and the 1-year amputation rate was 12.5%. Wagner's Classification of Diabetic Foot Ulcers grade, ankle-brachial index (ABI), low-density lipoprotein (LDL), and percutaneous oxygen partial pressure (TcPO2) were independent risk factors for amputation in patients with DF, while cerebrovascular disease, Sudoscan sweat gland function score, glycated hemoglobin (HbA1c) and peripheral artery disease (PAD) were independent risk factors for death in patients with DF. In addition, our results showed that in the case of amputation, the COX regression predictive model revealed an AUC of 0.788, sensitivity of 74.1% and specificity of 83.6%. The BP neural network predictive model identified an AUC of 0.874, sensitivity of 87.0% and specificity of 87.7%. An AUC of 0.909, sensitivity of 90.7% and specificity of 91.1% were found after optimizing the BP neural network prediction model via genetic algorithm. In the deep learning CNN model, the AUC, sensitivity and specificity were 0.939, 92.6%, and 95.2%, respectively. In the analysis of risk factors for death, the COX regression predictive model identified the AUC, sensitivity and specificity as 0.800, 74.1% and 85.9%, respectively. The BP neural network predictive model revealed an AUC, sensitivity and specificity of 0.937, 93.1% and 94.4%, respectively. Genetic algorithm-based optimization of the BP neural network predictive model identified an AUC, sensitivity and specificity of 0.932, 91.4% and 95.1%, respectively. The deep learning CNN model found the AUC, sensitivity and specificity to be 0.861, 82.8% and 89.4%, respectively. Conclusion: To identify risk factors for death, the BP neural network predictive model and genetic algorithm-based optimizing BP neural network predictive model have higher sensitivity and specificity than the deep learning method CNN predictive model and COX regression analysis.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/diagnóstico , Prognóstico , Reprodutibilidade dos Testes , Fatores de Risco , Amputação Cirúrgica
11.
Environ Toxicol ; 37(5): 1047-1057, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34995020

RESUMO

Mercury (Hg) is a persistent environmental and industrial pollutant that accumulated in the body and induces oxidative stress and inflammation damage. Selenium (Se) has been reported to antagonize immune organs damage caused by heavy metals. Here, we aimed to investigate the prevent effect of Se on mercuric chloride (HgCl2 )-induced thymus and bursa of Fabricius (BF) damage in chickens. The results showed that HgCl2 caused immunosuppression by reducing the relative weight, cortical area of the thymus and BF, and the number of peripheral blood lymphocytes. Meanwhile, HgCl2 induced oxidative stress and imbalance in cytokines expression in the thymus and BF. Further, we found that thioredoxin-interacting protein (TXNIP) and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediated HgCl2 -induced oxidative stress and inflammation. Mechanically, the targeting and inhibitory effect of microRNA (miR)-135b/183 on forkhead box O1 (FOXO1) were an upstream event for HgCl2 -activated TXNIP/NLRP3 inflammasome pathway. Most importantly, Se effectively attenuated the aforementioned damage in the thymus and BF caused by HgCl2 and inhibited the TXNIP/NLRP3 inflammasome pathway by reversing the expression of FOXO1 through inhibiting miR-135b/183. In conclusion, the miR-135b/183-FOXO1/TXNIP/NLRP3 inflammasome axis might be a novel mechanism for Se to antagonize HgCl2 -induced oxidative stress and inflammation in the central immune organs of chickens.


Assuntos
MicroRNAs , Selênio , Animais , Galinhas/metabolismo , Inflamassomos/metabolismo , Cloreto de Mercúrio/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Selênio/farmacologia
12.
Angew Chem Int Ed Engl ; 61(45): e202211450, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36048138

RESUMO

HNO has broad chemical and biomedical properties. Metal complexes and derivatives are widely used to make excellent HNO sensors. However, their favorable mechanistic origins are largely unknown. Cu cyclam is a useful platform to make excellent HNO sensors including imaging agents. A quantum chemical study of Cu cyclams with various substitutions was performed, which reproduced diverse experimental reactivities. Structural, electronic, and energetic profiles along reaction pathways show the importance of HNO binding and a proton-coupled electron transfer mechanism for HNO reaction. Results reveal that steric effect is primary and electronic factor is secondary (if the redox potential is sufficient), but their interwoven effects can lead to unexpected reactivity, which looks mysterious experimentally but can be explained computationally. This work suggests rational substituent design ideas and recommends a theoretical study of a new design to save time and cost due to its subtle effect.


Assuntos
Complexos de Coordenação , Ciclamos , Compostos Heterocíclicos , Óxidos de Nitrogênio/química , Complexos de Coordenação/química
13.
Ecotoxicol Environ Saf ; 228: 113018, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34837874

RESUMO

Mercury (Hg) is a persistent heavy metal contaminant with definite hepatotoxicity. Selenium (Se) has been shown to alleviate liver damage induced by heavy metals. Therefore, the present study aimed to explore the mechanism of the antagonistic effect of Se on mercury chloride (HgCl2)-induced hepatotoxicity in chickens. Firstly, we confirmed that Se alleviated HgCl2-induced liver injury through histopathological observation and liver function analyzation. The results also showed that Se prevented HgCl2-induced liver lipid accumulation and dyslipidemia by regulating the gene expression related to lipid as well as glucose metabolism. Moreover, Se blocked the nuclear factor kappa B (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, which was the key to alleviate the inflammation caused by HgCl2. Mechanically, Se inhibited immoderate mitochondrial division, fusion, and biogenesis caused by HgCl2, and also improved mitochondrial respiration, which were essential for preventing energy metabolism disorder and inflammation. In conclusion, our results suggested that Se inhibited energy metabolism disorder and inflammation by regulating mitochondrial dynamics, thereby alleviating HgCl2-induced liver injury in chickens. These results are expected to provide potential intervention and therapeutic targets for diseases caused by inorganic mercury poisoning.

14.
Korean J Parasitol ; 58(4): 393-402, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32871633

RESUMO

Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-α production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-α production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-α, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-α secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-α secretion in T. gondii-infected HTR8/SVneo cells.


Assuntos
MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor A3 de Adenosina/fisiologia , Toxoplasmose/metabolismo , Trofoblastos/metabolismo , Trofoblastos/parasitologia , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Humanos
16.
J Am Chem Soc ; 140(50): 17773-17781, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30488700

RESUMO

In this work, air-stable palladium(II) catalysts bearing bidentate phosphine ligands were designed and prepared, which could initiate fast and living polymerizations of various diazoacetate monomers under mild conditions. The polymerization afforded the desired polymers in high yields with controlled molecular weights ( Mns) and narrow molecular weight distributions ( Mw/ Mns). The Mns of the isolated polymers were linearly correlated to the initial feed ratios of monomer to catalyst, confirming the living/controlled manner of the polymerizations. The Mn also increased linearly with the monomer conversion, and all of the isolated polymers showed narrow Mw/ Mns. The polymerization was relatively fast and could be accomplished within several minutes. Such fast living polymerization method can be applied to a wide range of diazoacetate monomers in various organic solvents at room temperature in air. Taking advantage of the living nature, we facilely prepared a series of block copolymers through chain extension reactions. The amphiphilic block copolymers synthesized by this method exhibited interesting self-assembly properties. Moreover, polymerization of achiral bulky diazoacetate by Pd(II) catalysts bearing a chiral bidentate phosphine ligand leads to the formation of polymers with high optical activity due to the formation of the predominantly one-handed helix of the main chain. The helix sense of the polymers was determined by the chirality of the Pd(II) catalysts.

17.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28566375

RESUMO

There are seven antigenically distinct serotypes of foot-and-mouth disease virus (FMDV), each of which has intratypic variants. In the present study, we have developed methods to efficiently generate promising vaccines against seven serotypes or subtypes. The capsid-encoding gene (P1) of the vaccine strain O1/Manisa/Turkey/69 was replaced with the amplified or synthetic genes from the O, A, Asia1, C, SAT1, SAT2, and SAT3 serotypes. Viruses of the seven serotype were rescued successfully. Each chimeric FMDV with a replacement of P1 showed serotype-specific antigenicity and varied in terms of pathogenesis in pigs and mice. Vaccination of pigs with an experimental trivalent vaccine containing the inactivated recombinants based on the main serotypes O, A, and Asia1 effectively protected them from virus challenge. This technology could be a potential strategy for a customized vaccine with challenge tools to protect against epizootic disease caused by specific serotypes or subtypes of FMDV.IMPORTANCE Foot-and-mouth disease (FMD) virus (FMDV) causes significant economic losses. For vaccine preparation, the selection of vaccine strains was complicated by high antigenic variation. In the present study, we suggested an effective strategy to rapidly prepare and evaluate mass-produced customized vaccines against epidemic strains. The P1 gene encoding the structural proteins of the well-known vaccine virus was replaced by the synthetic or amplified genes of viruses of seven representative serotypes. These chimeric viruses generally replicated readily in cell culture and had a particle size similar to that of the original vaccine strain. Their antigenicity mirrored that of the original serotype from which their P1 gene was derived. Animal infection experiments revealed that the recombinants varied in terms of pathogenicity. This strategy will be a useful tool for rapidly generating customized FMD vaccines or challenge viruses for all serotypes, especially for FMD-free countries, which have prohibited the import of FMDVs.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais/imunologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Modelos Animais de Doenças , Febre Aftosa/imunologia , Febre Aftosa/patologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/patogenicidade , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Suínos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/isolamento & purificação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Vacinas Virais/administração & dosagem , Vacinas Virais/isolamento & purificação
18.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29292546

RESUMO

In this paper, the facile synthesis of hybrid Fe3 O4 magnetic nanoparticles carrying helical poly(phenyl isocyanide) (PPI) arms via both "grafting from" and "grafting onto" strategies is reported. First, alkyne-Pd(II) catalysts are anchored onto the surface of the Fe3 O4 magnetic nanoparticle, which promote the polymerization of enantiopure phenyl isocyanide, affording the expected hybrid magnetic nanoparticle with Fe3 O4 in core and helical PPI as arms. The nanoparticle also exhibits highly optical activity due to the excess of one-handed helicity of the PPI arms. Moreover, the hybrid magnetic nanoparticle can be alternatively synthesized via "grafting onto" strategy. A triethoxysilanyl-terminated single handed helical PPI bearing l-alanine ester pendants is prepared and grafted onto the surface of Fe3 O4 nanoparticle. The generated hybrid magnetic nanoparticles show both magnetic character and optical activity. Taking advantage of these properties, they can be used in enantioselective crystallization of racemic threonine. The enantiomeric excess (ee) of the induced crystals is up to 93%. Moreover, the nanoparticles can be facilely recovered and recycle used for at least four times in enantioselective crystallization without significantly loss of its enantioselectivity.


Assuntos
Isocianatos/química , Magnetismo , Nanopartículas de Magnetita/química , Polímeros/química , Cristalização , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Polimerização , Espectrofotometria/métodos , Estereoisomerismo , Temperatura
19.
Korean J Parasitol ; 56(4): 325-334, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30196664

RESUMO

Toxoplasma gondii is an apicomplexan zoonotic protozoan parasite that infects most species of warm-blooded animals, including humans. The heavy incidence and severe or lethal damage caused by T. gondii infection clearly indicate a need for the development of an effective vaccine. T. gondii GRA8 is a member of the dense granules protein family and is used as a marker of acute infection. In the present study, we evaluated the protective immunity induced by DNA vaccination based on a recombinant eukaryotic plasmid, pDsRed2-GRA8, against acute toxoplasmosis in mice. BALB/c mice were intramuscularly immunized with the pDsRed2-GRA8 plasmid and then challenged by infection with the highly virulent GFP-RH strain of T. gondii. The specific immune responses and protective efficacy against T. gondii of this vaccine were analyzed by measuring cytokine and serum antibody titers, splenocyte proliferation assays, and the survival times of mice after challenge. Our results showed that mice immunized with pDsRed2-GRA8 demonstrated specific humoral and cellular responses, induced higher IgG antibody titers with predominant IgG2a production; increased levels of IL-10, IL-12 (p70), IFN-γ, TNF-α, and splenocyte proliferation; and prolonged survival times compared to those of control mice. The present study showed that DNA immunization with pDsRed2-GRA8 induced humoral and cellular immune responses, and all immunized mice showed greater Th1-type immune responses and longer survival times than those of control mice. These results indicated that T. gondii GRA8 DNA immunization induces a partial protective effect against acute toxoplasmosis.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/prevenção & controle , Vacinas de DNA/imunologia , Doença Aguda , Animais , Anticorpos Antiprotozoários/sangue , Proliferação de Células , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Baço/citologia , Baço/imunologia
20.
Small ; 13(23)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28440043

RESUMO

Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly. Two microwalls are first printed by femtosecond laser direct-writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line-contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As-prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa