Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 410(25): 6549-6560, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30027316

RESUMO

Gas chromatography-mass spectrometry (GC-MS) is a versatile analytical method but its data is usually complicated by the presence of severely co-eluting and trace-level components. In this work, we introduce an optimized band-target entropy minimization approach for the analysis of complex mass spectral data. This new approach enables an automated mass spectral analysis which does not require any user-dependent inputs. Moreover, the approach provides improved sensitivity and accuracy for mass spectral reconstruction of severely co-eluting and trace-level components. The accuracy of our approach is compared to the automatic mass spectral deconvolution and identification system (AMDIS) with two controlled mixtures and a sample of Eucalyptus essential oil. Our approach was able to putatively identify 130 compounds in Eucalyptus essential oil, which was 46% in excess of that identified by AMDIS. This new approach is expected to benefit GC-MS analysis of complex mixtures such as biological samples and essential oils, in which the data are often complicated by co-eluting and trace-level components. Graphical abstract ᅟ.


Assuntos
Eucalyptus , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oligoelementos/análise , Algoritmos , Entropia , Eucalyptus/química , Padrões de Referência , Oligoelementos/química
2.
Chemistry ; 23(8): 1930-1936, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-27935185

RESUMO

Graphene platforms have been drawing considerable attention in electrochemistry for the detection of various electroactive probes. Depending on the chemical composition and properties of the probe, graphene materials with diverse structural features may be required to achieve an optimal electrochemical performance. This work comprises a comparative study on three chemically modified graphenes, obtained from the same starting material and with different oxygen functionalities and structural defects (graphene oxide (GO), chemically reduced graphene oxide (CRGO), and thermally reduced graphene oxide (TRGO)) towards the electrochemical detection of quinine, an important flavoring agent present in tonic-based beverages. In general, the reduced graphenes, namely CRGO and TRGO, showed enhanced performance in terms of calibration sensitivity and selectivity, due to the improved heterogeneous electron-transfer rates on their surfaces. In particular, CRGO provided the best overall electrochemical performance, which can be attributed to its higher density of structural defects and reduced amount of oxygen functionalities. For this reason, CRGO was employed for the electrochemical detection of quinine in commercial tonic drink samples, showing high sensitivity and selectivity, and therefore representing a valid low-cost alternative to more complicated and time consuming traditional analytical methods.

3.
Analyst ; 142(2): 279-283, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28001145

RESUMO

3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Impressão Tridimensional , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Substâncias Intercalantes/química , Limite de Detecção , Azul de Metileno/química , Hibridização de Ácido Nucleico , Oxirredução
4.
Phys Chem Chem Phys ; 19(24): 15914-15923, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28589980

RESUMO

Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO < BR-GO < HO-GO < HU-GO. In the same way, the pyridinic form of nitrogen increased and the electrocatalytic effect of N-doped graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

5.
Chem Soc Rev ; 45(9): 2458-93, 2016 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052352

RESUMO

The electrochemistry of graphene and its derivatives has been extensively researched in recent years. In the aspect of graphene preparation methods, the efficiencies of the top-down electrochemical exfoliation of graphite, the electrochemical reduction of graphene oxide and the electrochemical delamination of CVD grown graphene, are currently on par with conventional procedures. Electrochemical analysis of graphene oxide has revealed an unexpected inherent redox activity with, in some cases, an astonishing chemical reversibility. Furthermore, graphene modified with p-block elements has shown impressive electrocatalytic performances in processes which have been historically dominated by metal-based catalysts. Further progress has also been achieved in the practical usage of graphene in sensing and biosensing applications. This review is an update of our previous article in Chem. Soc. Rev. 2010, 39, 4146-4157, with special focus on the developments over the past two years.

6.
Chemistry ; 22(40): 14336-41, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27529691

RESUMO

The metallic 1 T phase of MoS2 has been widely identified to be responsible for the improved performances of MoS2 in applications including hydrogen evolution reactions and electrochemical supercapacitors. To this aim, various synthetic methods have been reported to obtain 1 T phase-rich MoS2 . Here, the aim is to evaluate the efficiencies of the bottom-up (hydrothermal reaction) and top-down (chemical exfoliation) approaches in producing 1 T phase MoS2 . It is established in this study that the 1 T phase MoS2 produced through the bottom-up approach contains a high proportion of 1 T phase and demonstrates excellent electrochemical and electrical properties. Its performance in the hydrogen evolution reaction and electrochemical supercapacitors also surpassed that of 1 T phase MoS2 produced through a top-down approach.

7.
Chemistry ; 22(17): 5969-75, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26968591

RESUMO

Tailoring and enhancing electrocatalytic activity is of the utmost importance from the viewpoints of sustainable energy and sensing. MoS2 and graphene show great promise for the electrocatalysis of many reactions. Given that both graphene and MoS2 are highly anisotropic in nature, with edge planes that are several orders of magnitude more catalytically active than basal planes, a new hybrid material with maximized edge-plane density to provide efficient electron transfer, high catalytic activity, and conductive cores was engineered. The hybrid material consists of radial MoS2 nanosheets with a high density of edge planes and unsaturated active sulfur atoms as well as interspersed with conductive graphene nanoplatelets. This hybrid material exhibits excellent activity for the hydrogen evolution reaction and the detection of DNA nucleobases. Such a nanoengineered, nanostructured hybrid material may play a major role in future electrocatalytic devices.


Assuntos
Dissulfetos/química , Grafite/química , Molibdênio/química , Nanoestruturas/química , Catálise , Eletroquímica , Eletrodos
8.
Phys Chem Chem Phys ; 18(14): 9673-81, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26998537

RESUMO

The majority of supercapacitor research studies on graphene materials today have been based upon developing electrochemical double-layer capacitors (EDLCs) using reduced graphenes. In contrast, graphene oxide (GO) is often neglected as a supercapacitor candidate due to its low electrical conductivity and surface area. Nonetheless, we present herein a fast (1 h) labelling of GO with o-phenylenediamine (PD) to produce PD-GO, exploiting inherent oxygen groups in creating new functionalities that exhibit capacitive enhancement from pseudo-capacitance. A high specific capacitance of 191 F g(-1) was obtained (at 0.2 A g(-1)), comparable to recent binder-free graphene supercapacitors. The large surface-normalized capacitance of up to 628 µF cm(-2) is also many times greater than the intrinsic capacitance of single-layer graphene (21 µF cm(-2)) as a result of additional pseudo-capacitance. A high capacity retention of ∼85% with each 10-fold increase in current density further indicates excellent rate performance. Hence, this approach in enhancing GO pseudo-capacitance may be similarly feasible as graphene EDLCs. Additionally, PD-GO was also found to exhibit a bright green fluorescence with a 540 nm maximum. The strongest fluorescence intensities arose from the smallest PD-GO fragments, and we attribute the origin to localised sp(2) domains and newly formed phenazine edge groups. The dual enhancement of dissimilar properties such as capacitance and fluorescence emphasizes the continued significance of covalent functionalisation towards tuning of properties in graphene-type materials.

9.
Phys Chem Chem Phys ; 18(27): 17875-80, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27314607

RESUMO

Graphene materials have found applications in a wide range of devices over the past decade. In order to meet the demand for graphene materials, various synthesis methods are constantly being improved or invented. Ball-milling of graphite to obtain graphene materials is one of the many versatile methods to easily obtain bulk quantities. In this work, we show that the graphene materials produced by ball-milling are spontaneously contaminated with metallic impurities originating from the grinding bowls and balls. Ball-milled sulfur-doped graphene materials obtained from two types of ball-milling apparatus, specifically made up of stainless steel and zirconium dioxide, were investigated. Zirconium dioxide-based ball-milled sulfur-doped graphene materials contain a drastically lower amount of metallic impurities than stainless steel-based ball-milled sulfur-doped graphene materials. The presence of metallic impurities is demonstrated by their catalytic effects toward the electrochemical catalysis of hydrazine and cumene hydroperoxide. The general impression toward ball-milling of graphite as a versatile method for the bulk production of 'metal-free' graphene materials without the need for post-processing and the selection of ball-milling tools should be cautioned. These findings would have wide-reaching implications for graphene research.

10.
Phys Chem Chem Phys ; 18(3): 1699-711, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26675834

RESUMO

Though many studies examined the properties of the class of IIIA-VIA and IVA-VIA layered materials, few have delved into the electrochemical aspect of such materials. In light of the burgeoning interest in layered structures towards various electrocatalytic applications, we endeavored to study the inherent electrochemical properties of representative layered materials of this class, GaSe and GeS, and their impact towards electrochemical sensing of redox probes as well as catalysis of oxygen reduction, oxygen evolution and hydrogen evolution reactions. In contrast to the typical sandwich structure of MoS2 layered materials, GeS is isoelectronic to black phosphorus with the same structure; GaSe is a layered material consisting of GaSe sheets bonded in the sequence Se-Ga-Ga-Se. We characterized GaSe and GeS by employing scanning electron microscopy, X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy complemented by electronic structure calculations. It was found that the encompassing surface oxide layers on GaSe and GeS greatly influenced their electrochemical properties, especially their electrocatalytic capabilities towards hydrogen evolution reaction. These findings provide fresh insight into the electrochemical properties of these IIIA-VIA and IVA-VIA layered structures which enables development for future applications.

11.
Angew Chem Int Ed Engl ; 55(36): 10751-4, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27496619

RESUMO

The chemical functionalization of hydrogenated graphene can modify its physical properties and lead to better processability. Herein, we describe the chemical functionalization of hydrogenated graphene through a dehydrogenative cross-coupling reaction between an allylic C-H bond and the α-C-H bond of tetrahydrothiophen-3-one using Cu(OTf)2 as the catalyst and DDQ as the oxidant. The chemical functionalization was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy and visualized by scanning electron microscopy. The functionalized hydrogenated graphene material demonstrated improved dispersion stability in water, bringing new quality to the elusive hydrogenated graphene (graphane) materials. Hydrogenated graphene provides broad possibilities for chemical modifications owing to its reactivity.

12.
Small ; 11(11): 1266-72, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25332199

RESUMO

Graphite oxide (GiO) and graphene oxide (GeO) possess wide applicability in technological devices. The exact chemical compositions, structures, and properties of these materials remain vague to the graphene community despite being heavily researched. As metastable materials, the properties of GiO and GeO are easily manipulated under various conditions of temperature, light, and atmosphere. Although these aspects are important considerations for long-term storage of the materials, they are not well understood. In this experimental work, investigations are performed to determine how light and atmosphere contribute to the characteristics of GiO and GeO powders. The study shows that, at room-temperature, the quasi-equilibrium states of both materials, in specific the O/C ratios, vary according to the storage conditions. Drastic disparities between GiO and GeO are observed. GiO kept away from light and GeO kept under inert atmosphere maintain relatively high O/C ratios. As the metastable states of the materials are governed by the diffusion of oxygen functionalities, the presence of epoxide groups diminishes while negligible changes occur to the sp(2) lattice size. This experimental work lays out fundamental aspects that govern the stability of frequently mass-produced GiO and GeO powders under different environments, with major implications on their optimal storage conditions.

13.
Small ; 11(31): 3790-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25939616

RESUMO

Halogen functionalization of graphene is an important branch of graphene research as it provides opportunities to tailor the band gap and catalytic properties of graphene. Monovalent C-X bond obviates pitfalls of functionalization with atoms of groups 13, 15, and 16, which can introduce various poorly defined groups. Here, the preparation of functionalized graphene containing both fluorine and chlorine atoms is shown. The starting material, fluorographite, undergoes a reaction with dichlorocarbene to provide dichlorocarbene-functionalized fluorographene (DCC-FG). The material is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and high-resolution transmission electron microscopy with X-ray dispersive spectroscopy. It is found that the chlorine atoms in DCC-FG are distributed homogeneously over the entire area of the fluorographene sheet. Further density functional theory calculations show that the mechanism of dichlorocarbene attack on fluorographene sheet is a two-step process. Dichlorocarbene detaches fluorine atoms from fluorographene sheet and subsequently adds to the newly formed sp(2) carbons. Halogenated graphene consisting of two (or eventually three) types of halogen atoms is envisioned to find its way as new graphene materials with tailored properties.

14.
Chemistry ; 21(36): 12550-62, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126767

RESUMO

The rise in global demand for crucial chemical compounds has driven immense research in the fundamental science of catalysis. Graphene and its derivatives (chemically modified graphene, CMGs) have recently emerged as a new class of heterogeneous catalyst that promises economically viable and greener routes to these compounds. Although CMGs possess unique catalytic properties, the actual active sites are often points of discussion. Current minimal understanding on the possible effects of metallic impurities on the electrocatalytic performances of these CMGs calls forth the need to raise awareness on possible metallic impurities misrepresenting the actual chemical catalytic performances of the CMGs. This Minireview highlights the latest advances in the application of CMGs as catalysts, with an emphasis on the possible effects of metallic impurities on CMG catalysis.

15.
Chemistry ; 21(22): 8090-5, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25820026

RESUMO

Nitrogen functionalization of graphene offers new hybrid materials with improved performance for important technological applications. Despite studies highlighting the dependence of the performance of nitrogen-functionalized graphene on the types of nitrogen functional groups that are present, precise synthetic control over their ratio is challenging. Herein, the synthesis of nitrogen-functionalized graphene rich in amino groups by a Bucherer-type reaction under hydrothermal conditions is reported. The efficiency of the synthetic method under two hydrothermal conditions was examined for graphite oxide produced by Hummers and Hofmann oxidation routes. The morphological and structural properties of the amino-functionalized graphene were fully characterized. The use of a synthetic method with a well-known mechanism for derivatization of graphene will open new avenues for highly reproducible functionalization of graphene materials.

16.
Chemistry ; 21(7): 3073-8, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25511983

RESUMO

The development of two-dimensional nanomaterials has expedited the growth of advanced technological applications. PbI2 is a layered inorganic solid with important and unique properties suitable for applications in the detection of electromagnetic radiation. While the optical and electrical properties of layered PbI2 have been generally established, its electrochemistry has remained largely unexplored. In this work, we examine the inherent electrochemistry of PbI2 in relation to its morphological and structural properties. A direct comparison between commercially available and solution-grown PbI2 showed high similarity in properties based on characterizations by X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The respective layered PbI2 materials also exhibited similar inherent electrochemistry. Electrochemical potential cycling of PbI2 in phosphate buffer resulted in the dissolution of iodide ions from PbI2 to form complex lead-phosphate-chloride with the oxygen groups of the phosphate ions while retaining the hexagonal structure. In the case of KCl solution, the formation of PbO2 was observed.

17.
Chemistry ; 21(37): 13020-6, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26215131

RESUMO

As the research in nanotechnology progresses, there will eventually be an influx in the number of commercial products containing different types of nanomaterials. This phenomenon might damage our health and environment if the nanomaterials used are found to be toxic and they are released into the waters when the products degrade. In this study, we investigated the cytotoxicity of fluorinated nanocarbons (CXFs), a group of nanomaterials which can find applications in solid lubricants and lithium primary batteries. Our cell viability findings indicated that the toxicological effects induced by the CXF are dependent on the dose, size, shape, and fluorine content of the CXF. In addition, we verified that CXFs have insignificant interactions with the cell viability assays-methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8), thus suggesting that the cytotoxicity data obtained are unlikely to be affected by CXF-induced artifacts and the results will be reliable.

18.
Chemphyschem ; 16(4): 769-74, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25619729

RESUMO

Recent research on stable 2D nanomaterials has led to the discovery of new materials for energy-conversion and energy-storage applications. A class of layered heterostructures known as misfit-layered chalcogenides consists of well-defined atomic layers and has previously been applied as thermoelectric materials for use as high-temperature thermoelectric batteries. The performance of such misfit-layered chalcogenides in electrochemical applications, specifically the hydrogen evolution reaction, is currently unexplored. Herein, a misfit-layered chalcogenide consisting of CoO2 layers interleaved with an SrO-BiO-BiO-SrO rock-salt block and having the formula Bi1.85 Sr2 Co1.85 O7.7-δ is synthesized and examined for its structural and electrochemical properties. The hydrogen-evolution performance of misfit-layered Bi1.85 Sr2 Co1.85 O7.7-δ , which has an overpotential of 589 mV and a Tafel slope of 51 mV per decade, demonstrates the promising potential of misfit-layered chalcogenides as electrocatalysts instead of classical carbon.

19.
Proc Natl Acad Sci U S A ; 109(32): 12899-904, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826262

RESUMO

Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.


Assuntos
Grafite/análise , Grafite/isolamento & purificação , Metais/química , Cloro , Eletroquímica/métodos , Grafite/química , Espectrometria de Massas , Oxirredução , Temperatura
20.
Chem Soc Rev ; 43(1): 291-312, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24121318

RESUMO

The chemical reduction of graphene oxide is a promising route towards the large scale production of graphene for commercial applications. The current state-of-the-art in graphene oxide reduction, consisting of more than 50 types of reducing agent, will be reviewed from a synthetic chemistry point of view. Emphasis is placed on the techniques, reaction mechanisms and the quality of the produced graphene. The reducing agents are reviewed under two major categories: (i) those which function according to well-supported mechanisms and (ii) those which function according to proposed mechanisms based on knowledge of organic chemistry. This review will serve as a valuable platform to understand the efficiency of these reducing agents for the reduction of graphene oxide.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa