Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(3): 034703, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365006

RESUMO

In semiconductor device history, a trend is observed where narrowing and increasing the number of material layers improve device functionality, with diodes, transistors, thyristors, and superlattices following this trend. While superlattices promise unique functionality, they are not widely adopted due to a technology barrier, requiring advanced fabrication, such as molecular beam epitaxy and lattice-matched materials. Here, a method to design quantum devices using amorphous materials and physical vapor deposition is presented. It is shown that the multiplication gain M depends on the number of layers of the superlattice, N, as M = kN, with k as a factor indicating the efficiency of multiplication. This M is, however, a trade-off with transit time, which also depends on N. To demonstrate, photodetector devices are fabricated on Si, with the superlattice of Se and As2Se3, and characterized using current-voltage (I-V) and current-time (I-T) measurements. For superlattices with the total layer thicknesses of 200 nm and 2 µm, the results show that k200nm = 0.916 and k2µm = 0.384, respectively. The results confirm that the multiplication factor is related to the number of superlattice layers, showing the effectiveness of the design approach.

2.
Water Sci Technol ; 57(12): 2031-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18587194

RESUMO

Microbial fuel cell (MFC) is an emerging and promising technology, particularly in the field of wastewater treatment. The MFC capability of achieving organic removal and generating in situ electricity could make it an attractive alternative wastewater treatment technology over conventional treatment technologies. However, MFC is still far from being economically viable, especially because of the cost of the platinum (Pt) catalyst that makes possible the reaction at the cathode. In this study, we tested alternative cathode catalysts, namely sputter-deposited Cobalt (Co) and denitrifying bacteria (biocathode). The performance of these innovative cathodes was compared with that of classic Pt-cathodes. Co competed well with Pt, but further research is still required for biocathodes. However, biocathodes MFC have showed promise.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Conservação de Recursos Energéticos/métodos , Eliminação de Resíduos Líquidos/métodos , Eletricidade , Eletrodos
3.
Dalton Trans ; 43(40): 14931-5, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24934560

RESUMO

Nitrogen-doped carbon microspheres (NCSs) were fabricated via a simple, fast and energy-saving microwave-assisted method followed by thermal treatment under an ammonia atmosphere. NCSs thermally treated at different temperatures were investigated as anode materials for lithium ion batteries (LIBs). The results show that NCSs treated at 900 °C exhibit a maximum reversible capacity of 816 mA h g(-1) at a current density of 50 mA g(-1) and preserve a capacity of 660 mA h g(-1) after 50 cycles, and even at a high current density of 1000 mA g(-1), a capacity of 255 mA h g(-1) is maintained. The excellent electrochemical performance of NCSs is due to their porous structure and nitrogen-doping. The present NCSs should be promising low-cost anode materials with a high capacity and good cycle stability for LIBs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa