Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 234: 116553, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406722

RESUMO

The ubiquitous and refractory benzophenone (BP)-type ultraviolet filters, which are also endocrine disruptors, were commonly detected in the aquatic matrix and could not be efficiently removed by conventional wastewater treatment processes, thus causing extensive concern. Herein, a novel ternary nanocomposite, P-g-CN/α-Bi2O3/WO3 (P-gBW), was successfully fabricated by mixing cocalcinated components and applied to the decomposition of BP-type ultraviolet filters. The dual-Z-scheme heterostructure of P-gBW enhances visible-light absorption, efficiently facilitates separation and mobility, and prolongs the lifetime of photoinduced charge carriers via double charge transfer mechanisms. The optimum 95 wt% P-gBW exhibited excellent photocatalytic activity, degrading 96% 4-hydroxy benzophenone (4HBP) within 150 min and 93% 2,2',4,4'-tetrahydroxybenzophenone (BP-2) within 100 min under visible-light illumination, respectively. The pseudo-first-order rate constant of 4HBP (1.15 h-1) was 6.8-, 3.1-, 3.3- and 2.2-fold higher than those of WO3, P-g-CN, α-Bi2O3, and P-g-CN/α-Bi2O3, respectively, while that of BP-2 (1.71 h-1) was 5.2-, 2.2-, 3.2- and 1.5-fold higher, respectively. The improved photocatalytic degradation was attributed to efficient photoinduced charge carrier separation and migration and prevented the recombination of electron holes, as verified by photoluminescence, transient photocurrent response, and electrochemical impedance spectroscopy. Trapping experiments, electron paramagnetic resonance, and band energy position indicated an efficient dual-Z-scheme heterostructure.


Assuntos
Benzofenonas , Luz , Iluminação , Espectroscopia de Ressonância de Spin Eletrônica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa