Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835610

RESUMO

The immuno-compatibility of implant materials is a key issue for both initial and long-term implant integration. Ceramic implants have several advantages that make them highly promising for long-term medical solutions. These beneficial characteristics include such things as the material availability, possibility to manufacture various shapes and surface structures, osteo-inductivity and osteo-conductivity, low level of corrosion and general biocompatibility. The immuno-compatibility of an implant essentially depends on the interaction with local resident immune cells and, first of all, macrophages. However, in the case of ceramics, these interactions are insufficiently understood and require intensive experimental examinations. Our review summarizes the state of the art in variants of ceramic implants: mechanical properties, different chemical modifications of the basic material, surface structures and modifications, implant shapes and porosity. We collected the available information about the interaction of ceramics with the immune system and highlighted the studies that reported ceramic-specific local or systemic effects on the immune system. We disclosed the gaps in knowledge and outlined the perspectives for the identification to ceramic-specific interactions with the immune system using advanced quantitative technologies. We discussed the approaches for ceramic implant modification and pointed out the need for data integration using mathematic modelling of the multiple ceramic implant characteristics and their contribution for long-term implant bio- and immuno-compatibility.


Assuntos
Materiais Dentários , Próteses e Implantes , Cerâmica/química , Macrófagos , Tecnologia
2.
Front Immunol ; 15: 1349461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596667

RESUMO

The increasing use of medical implants in various areas of medicine, particularly in orthopedic surgery, oncology, cardiology and dentistry, displayed the limitations in long-term integration of available biomaterials. The effective functioning and successful integration of implants requires not only technical excellence of materials but also consideration of the dynamics of biomaterial interaction with the immune system throughout the entire duration of implant use. The acute as well as long-term decisions about the efficiency of implant integration are done by local resident tissue macrophages and monocyte-derived macrophages that start to be recruited during tissue damage, when implant is installed, and are continuously recruited during the healing phase. Our review summarized the knowledge about the currently used macrophages-based in vitro cells system that include murine and human cells lines and primary ex vivo differentiated macrophages. We provided the information about most frequently examined biomarkers for acute inflammation, chronic inflammation, foreign body response and fibrosis, indicating the benefits and limitations of the model systems. Particular attention is given to the scavenging function of macrophages that controls dynamic composition of peri-implant microenvironment and ensures timely clearance of microorganisms, cytokines, metabolites, extracellular matrix components, dying cells as well as implant debris. We outline the perspective for the application of 3D systems for modelling implant interaction with the immune system in human tissue-specific microenvironment avoiding animal experimentation.


Assuntos
Materiais Biocompatíveis , Macrófagos , Animais , Humanos , Camundongos , Inflamação , Citocinas , Próteses e Implantes
3.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160901

RESUMO

The additive manufacturing of BaTiO3 (BT) ceramics through stereolithography (SLA) 3D printing at 465 nm wavelength was demonstrated. After different milling times, different paste compositions with varied initial micron-sized powders were studied to find a composition suitable for 3D printing. The pastes were evaluated in terms of photopolymerization depth depending on the laser scanning speed. Furthermore, the microstructure and properties of the BT ceramic samples produced through SLA 3D printing were characterized and compared with those of ceramics fabricated through a conventional die semi-drying pressing method. Three-dimensional printed samples achieved relative densities over 0.95 and microhardness over 500 HV after sintering, nearly matching the relative density and microhardness attained by the pressed samples. Upon poling, the 3D-printed samples attained acceptable piezoelectric module d33 = 148 pC/N and dielectric constants over 2000. At near full density, BT piezoceramics were successfully fabricated through SLA 3D printing at 465 nm wavelength, achieving photopolymerization depth of more than 100 microns. This work paves the relatively low-cost way for 3D printing of piezoelectric ceramics using conventional micron-sized powders and high printed layer thickness.

4.
Materials (Basel) ; 13(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899496

RESUMO

Evolution of additively manufactured (AM) ceramics' microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.

5.
Materials (Basel) ; 12(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775227

RESUMO

Low-permeable materials, either artificial or natural, are essential components of the current technological development. Their production or processing requires a comprehensive characterization method based on confident reference standards. Permeability standards for values below 10-15 m2 are lacking. In this study, we explored the feasibility of using the ceramic sintering process to reach low, but measurable values of gas permeability in Al2O3 samples, as one of the potential materials for reference standards. The studied samples were produced with a ceramic 3D printer, which enables the manufacturing of low-permeable samples having complex geometrical arrangements. A series of preliminary laboratory testing indicated the available gas permeability range from 2.4 × 10-15 m2 for the pre-sintered samples to 1.8 × 10-21 m2 for the sintered samples. The verification of the permeability reduction was carried out using a unique unsteady state fast and accurate measurement method. The results confirm the possibility of developing a technology for materials manufacturing with low porosity and permeability. Such materials open many areas for application, including manufacturing of ceramics with controlled transport properties and low-permeability standards for calibrating laboratory equipment for geosciences, construction industries, biomedical, and other relevant fields.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa