RESUMO
Locally routing the exciton emissions in two-dimensional (2D) transition-metal dichalcogenides along different directions at the nanophotonic interface is of great interest in exploiting the promising 2D excitonic systems for functional nano-optical components. However, such control has remained elusive. Herein we report on a facile plasmonic approach for electrically controlled spatial modulation of the exciton emissions in a WS2 monolayer. The emission routing is enabled by the resonance coupling between the WS2 excitons and the multipole plasmon modes in individual silver nanorods placed on a WS2 monolayer. Different from prior demonstrations, the routing effect can be modulated by the doping level of the WS2 monolayer, enabling electrical control. Our work takes advantage of the high-quality plasmon modes supported by simple rod-shaped metal nanocrystals for the angularly resolved manipulation of 2D exciton emissions. Active control is achieved, which offers great opportunities for the development of nanoscale light sources and nanophotonic devices.
RESUMO
The introduction of structural complexity to nanoparticles brings them interesting properties. Regularity breaking has been challenging in the chemical synthesis of nanoparticles. Most reported chemical methods for synthesizing irregular nanoparticles are complicated and laborious, largely hindering the exploration of structural irregularity in nanoscience. In this study, the authors have combined seed-mediated growth and Pt(IV)-induced etching to synthesize two types of unprecedented Au nanoparticles, bitten nanospheres and nanodecahedrons, with size control. Each nanoparticle has an irregular cavity on it. They exhibit distinct single-particle chiroptical responses. Perfect Au nanospheres and nanorods without any cavity do not show optical chirality, which demonstrates that the geometrical structure of the bitten opening plays a decisive role in the generation of chiroptical responses.
RESUMO
Utilizing electromagnetic hotspots within plasmonic nanogaps is a promising approach to create ultrasensitive surface-enhanced Raman scattering (SERS) substrates. However, it is difficult for many molecules to get positioned in such nanogaps. Metal-organic frameworks (MOFs) are commonly used to absorb and concentrate diverse molecules. Herein, we combine these two strategies by introducing MOFs into plasmon-coupled nanogaps, which has so far remained experimentally challenging. Ultrasensitive SERS substrates are fabricated through the construction of nanoparticle-on-mirror structures, where Au nanocrystals are encapsulated with a zeolitic imidazolate framework-8 (ZIF-8) shell and then coupled to a gold film. The ZIF-8 shell, as a spacer that separates the Au nanocrystal and the Au film, can be adjusted in thickness over a wide range, which allows the electric field enhancement and plasmon resonance wavelength to be varied. By trapping Raman-active molecules within the ZIF-8 shell, we show that our plasmon-coupled structures exhibit a superior SERS detection performance. A range of volatile organic compounds at the concentrations of 10-2 mg m-3 can be detected sensitively and reliably. Our study therefore offers an attractive route for synergistically combining plasmonic electric field enhancement and MOF-enabled molecular enrichment to design and create SERS substrates for ultrasensitive detection.
RESUMO
The deposition of chiral nanoparticles (NPs) onto various substrates is crucial for the fabrication of high-density photonic devices. Understanding the interaction of chiral light and chiral NPs supported on substrates is essential for developing optical sensors and modulators. However, the chiroptical responses of plasmonic chiral NPs on substrates have remained elusive. Here we provide an important understanding of the correlation between the substrate material and the chiroptical response. The scattering dissymmetry factors of individual chiral Au nanocubes are inverted and enhanced with a gold film. Qualitative theories are proposed to analyze the observed variations in the chiroptical signals of chiral NPs on different substrates. Our results offer an encouraging route for modulating and amplifying the chiroptical signals in the use of chiral NPs in light control, light-based quantum technologies, and sensing.
RESUMO
The integration of two-dimensional transition metal dichalcogenides with plasmonic nanostructures is extremely attractive for the investigation of the resonance coupling between plasmons and excitons, which offers a framework for the study of cavity quantum electrodynamics and is of great potential for exploring diverse quantum technologies. Herein we report on the coupling between the magnetic plasmons supported by individual asymmetric Au nanocups and the excitons in WS2 monolayer and multilayer. Resonance coupling with the strength varying from weak to strong regimes is realized by adjusting the orientation of the individual Au nanocups on WS2 monolayer. Different energy detunings between the magnetic plasmons and the excitons are achieved by varying the size of the Au nanocup. The Rabi splitting energies extracted at zero detuning are up to 106 meV. The anticrossing feature is observed in the measured scattering spectra and simulated absorption spectra, which indicates that the resonance coupling between the magnetic plasmons in the Au nanocup and the excitons in WS2 monolayer enters the strongly coupled regime. A dependence of the coupling strength on the layer number is further observed when the Au nanocups are coupled with WS2 multilayer. Our study suggests a promising approach toward the realization of different coupling regimes in a simple hybrid system made of individual Au nanocups and two-dimensional materials.
RESUMO
Transferring traditional plasmonic noble metal nanomaterials from the laboratory to industrial production has remained challenging due to the high price of noble metals. The development of cost-effective non-noble-metal alternatives with outstanding plasmonic properties has therefore become essential. Herein, we report on the gram-scale production of differently shaped TiN nanoparticles with strong plasmon-enabled broadband light absorption, including differently sized TiN nanospheres, nanobipyramids, and nanorod arrays. The TiN nanospheres and nanobipyramids are further coembedded in highly porous poly(vinyl alcohol) films to function as a photothermal material for solar seawater desalination. A seawater evaporation rate of 3.8 kg m-2 h-1 is achieved, which marks the record performance among all plasmonic solar seawater desalination systems reported so far. The removal percentage of phenol reaches 98.3%, which is attributed to the joint action of the excellent photocatalytic ability and the superhydrophilicity of the porous TiN-based composite film.
RESUMO
Excitons in a transition-metal dichalcogenide (TMDC) monolayer can be modulated through strain with spatial and spectral control, which offers opportunities for constructing quantum emitters for applications in on-chip quantum communication and information processing. Strain-localized excitons in TMDC monolayers have so far mainly been observed under cryogenic conditions because of their subwavelength emission area, low quantum yield, and thermal-fluctuation-induced delocalization. Herein, we demonstrate both generation and detection of strain-localized excitons in WS2 monolayer through a simple plasmonic structure design, where WS2 monolayer covers individual Au nanodisks or nanorods. Enhanced emission from the strain-localized excitons of the deformed WS2 monolayer near the plasmonic hotspots is observed at room temperature with a photoluminescence energy redshift up to 200 meV. The emission intensity and peak energy of the strain-localized excitons can be adjusted by the nanodisk size. Furthermore, the excitation and emission polarization of the strain-localized excitons are modulated by anisotropic Au nanorods. Our results provide a promising strategy for constructing nonclassical integrated light sources, high-sensitivity strain sensors, or tunable nanolasers for future dense nanophotonic integrated circuits.