RESUMO
The Asian Society of Cardiovascular Imaging-Practical Tutorial (ASCI-PT) is an instructional initiative of the ASCI School designed to enhance educational standards. In 2021, the ASCI-PT was convened with the goal of formulating a consensus statement on the assessment of coronary stenosis and coronary plaque using coronary CT angiography (CCTA). Nineteen experts from four countries conducted thorough reviews of current guidelines and deliberated on eight key issues to refine the process and improve the clarity of reporting CCTA findings. The experts engaged in both online and on-site sessions to establish a unified agreement. This document presents a summary of the ASCI-PT 2021 deliberations and offers a comprehensive consensus statement on the evaluation of coronary stenosis and coronary plaque in CCTA.
RESUMO
Dilated cardiomyopathy (DCM) is one of the most common types of non-ischemic cardiomyopathy. DCM is characterized by left ventricle (LV) dilatation and systolic dysfunction without coronary artery disease or abnormal loading conditions. DCM is not a single disease entity and has a complex historical background of revisions and updates to its definition because of its diverse etiology and clinical manifestations. In cases of LV dilatation and dysfunction, conditions with phenotypic overlap should be excluded before establishing a DCM diagnosis. The differential diagnoses of DCM include ischemic cardiomyopathy, valvular heart disease, burned-out hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, and non-compaction.Cardiac magnetic resonance (CMR) imaging is helpful for evaluating DCM because it provides precise measurements of cardiac size, function, mass, and tissue characterization. Comprehensive analyses using various sequences, including cine imaging, late gadolinium enhancement imaging, and T1 and T2 mapping, may help establish differential diagnoses, etiological workup, disease stratification, prognostic determination, and follow-up procedures in patients with DCM phenotypes. This article aimed to review the utilities and limitations of CMR in the diagnosis and assessment of DCM.
RESUMO
Objective@#The factors related to injury severity in accidents in Korea are unclear. This study helps primary physicians treat victims of traffic accidents with a high probability of severe injury during the initial evaluation in the emergency department (ED). @*Methods@#This study was conducted on patients who visited Pusan National University Hospital regional trauma center, Korea, between January 2017 and December 2019 due to involvement in automobile accidents as a driver. Multivariate logistic regression analysis was used to determine the relationship of factors with injury severity. @*Results@#A total of 973 patients were included. Of them, 316 (32.5%) were severely injured. In the multivariate logistic regression analysis, older age was significantly associated with more severe injury (odds ratio [OR], 1.030; 95% confidence interval [CI], 1.017-1.043; P<0.001). A significant difference was noted in injury severity according to the mode of transportation to the ED. Transportation via private ambulance was associated with more severe injury than via public ambulance (OR, 5.853; 95% CI, 3.986-8.594; P<0.001). The severe injury was more likely when the collision involved a large-sized vehicle (OR, 2.369; 95% CI, 1.466-3.826; P<0.001), or a fixed object (OR, 2.077; 95% CI, 1.326-3.254; P<0.001) compared to a small-sized vehicle. The group that did not wear a seat belt had more severe injuries than those who wore a seat belt (OR, 2.218; 95% CI, 1.421-3.463; P<0.001). @*Conclusion@#Injury severity was correlated with age, mode of transportation to the ED, type of collision and seat belt use. These results will help primary physicians assess critically ill patients.
RESUMO
Left ventricular (LV) wall thickening, or LV hypertrophy (LVH), is common and occurs in diverse conditions including hypertrophic cardiomyopathy (HCM), hypertensive heart disease, aortic valve stenosis, lysosomal storage disorders, cardiac amyloidosis, mitochondrial cardiomyopathy, sarcoidosis and athlete’s heart. Cardiac magnetic resonance (CMR) imaging provides various tissue contrasts and characteristics that reflect histological changes in the myocardium, such as cellular hypertrophy, cardiomyocyte disarray, interstitial fibrosis, extracellular accumulation of insoluble proteins, intracellular accumulation of fat, and intracellular vacuolar changes. Therefore, CMR imaging may be beneficial in establishing a differential diagnosis of LVH. Although various diseases share LV wall thickening as a common feature, the histologic changes that underscore each disease are distinct.This review focuses on CMR multiparametric myocardial analysis, which may provide clues for the differentiation of thickened myocardium based on the histologic features of HCM and its phenocopies.
RESUMO
Objective@#This study aimed to evaluate the effect of implementing the consensus statement from the Asian Society of Cardiovascular Imaging-Practical Tutorial 2020 (ASCI-PT 2020) on the reliability of cardiac MR with late gadolinium enhancement (CMR-LGE) myocardial viability scoring between observers in the context of ischemic cardiomyopathy. @*Materials and Methods@#A total of 17 cardiovascular imaging experts from five different countries evaluated CMR obtained in 26 patients (male:female, 23:3; median age [interquartile range], 55.5 years [50–61.8]) with ischemic cardiomyopathy. For LGE scoring, based on the 17 segments, the extent of LGE in each segment was graded using a five-point scoring system ranging from 0 to 4 before and after exposure according to the consensus statement. All scoring was performed via webbased review. Scores for slices, vascular territories, and total scores were obtained as the sum of the relevant segmental scores. Interobserver reliability for segment scores was assessed using Fleiss’ kappa, while the intraclass correlation coefficient (ICC) was used for slice score, vascular territory score, and total score. Inter-observer agreement was assessed using the limits of agreement from the mean (LoA). @*Results@#Interobserver reliability (Fleiss’ kappa) in each segment ranged 0.242–0.662 before the consensus and increased to 0.301–0.774 after the consensus. The interobserver reliability (ICC) for each slice, each vascular territory, and total score increased after the consensus (slice, 0.728–0.805 and 0.849–0.884; vascular territory, 0.756–0.902 and 0.852–0.941; total score, 0.847 and 0.913, before and after implementing the consensus statement, respectively. Interobserver agreement in scoring also improved with the implementation of the consensus for all slices, vascular territories, and total score. The LoA for the total score narrowed from ± 10.36 points to ± 7.12 points. @*Conclusion@#The interobserver reliability and agreement for CMR-LGE scoring for ischemic cardiomyopathy improved when following guidance from the ASCI-PT 2020 consensus statement.
RESUMO
Purpose@#This study aimed to evaluate the utility of the 16-cm axial volume scan technique for calculating the coronary artery calcium score (CACS) using non-enhanced chest CT. @*Materials and Methods@#This study prospectively enrolled 20 participants who underwent both, non-enhanced chest CT (16-cm-coverage axial volume scan technique) and calciumscore CT, with the same parameters, differing only in slice thickness (in non-enhanced chest CT = 0.625, 1.25, 2.5 mm; in calcium score CT = 2.5 mm). The CACS was calculated using the conventional Agatston method. The difference between the CACS obtained from the two CT scans was compared, and the degree of agreement for the clinical significance of the CACS was confirmed through sectional analysis. Each calcified lesion was classified by location and size, and a one-to-one comparison of non-contrast-enhanced chest CT and calcium score CT was performed. @*Results@#The correlation coefficients of the CACS obtained from the two CT scans for slice thickness of 2.5, 1.25, and 0.625 mm were 0.9850, 0.9688, and 0.9834, respectively. The mean differences between the CACS were -21.4% at 0.625 mm, -39.4% at 1.25 mm, and -76.2% at 2.5 mm slice thicknesses. Sectional analysis revealed that 16 (80%), 16 (80%), and 13 (65%) patients showed agreement for the degree of coronary artery disease at each slice interval, respectively. Inter-reader agreement was high for each slice interval. The 0.625 mm CT showed the highest sensitivity for detecting calcified lesions. @*Conclusion@#The values in the non-contrast-enhanced chest CT, using the 16-cm axial volume scan technique, were similar to those obtained using the CACS in the calcium score CT, at 0.625 mm slice thickness without electrocardiogram gating. This can ultimately help predict cardiovascular risk without additional radiation exposure.
RESUMO
Purpose@#This study aimed to investigate the optimal threshold value in Hounsfield units (HU) on CT to detect the solid components of pulmonary subsolid nodules using pathologic invasive foci as reference. @*Materials and Methods@#Thin-section non-enhanced chest CT scans of 25 patients with pathologically confirmed minimally invasive adenocarcinoma were retrospectively reviewed. On CT images, the solid portion was defined as the area with higher attenuation than various HU thresholds ranging from -600 to -100 HU in 50-HU intervals. The solid portion was measured as the largest diameter on axial images and as the maximum diameter on multiplanar reconstruction images. A linear mixed model was used to evaluate bias in each threshold by using the pathological size of invasive foci as reference. @*Results@#At a threshold of -400 HU, the biases were lowest between the largest/maximum diameter of the solid portion of subsolid nodule and the size of invasive foci of the pathological specimen, with 0.388 and -0.0176, respectively. They showed insignificant difference (p = 0.2682, p = 0.963, respectively) at a threshold of -400 HU. @*Conclusion@#For quantitative analysis, -400 HU may be the optimal threshold to define the solid portion of subsolid nodules as a surrogate marker of invasive foci.
RESUMO
Purpose@#This study aimed to investigate the optimal threshold value in Hounsfield units (HU) on CT to detect the solid components of pulmonary subsolid nodules using pathologic invasive foci as reference. @*Materials and Methods@#Thin-section non-enhanced chest CT scans of 25 patients with pathologically confirmed minimally invasive adenocarcinoma were retrospectively reviewed. On CT images, the solid portion was defined as the area with higher attenuation than various HU thresholds ranging from -600 to -100 HU in 50-HU intervals. The solid portion was measured as the largest diameter on axial images and as the maximum diameter on multiplanar reconstruction images. A linear mixed model was used to evaluate bias in each threshold by using the pathological size of invasive foci as reference. @*Results@#At a threshold of -400 HU, the biases were lowest between the largest/maximum diameter of the solid portion of subsolid nodule and the size of invasive foci of the pathological specimen, with 0.388 and -0.0176, respectively. They showed insignificant difference (p = 0.2682, p = 0.963, respectively) at a threshold of -400 HU. @*Conclusion@#For quantitative analysis, -400 HU may be the optimal threshold to define the solid portion of subsolid nodules as a surrogate marker of invasive foci.
RESUMO
Percutaneous transthoracic needle biopsy (PTNB) is one of the essential diagnostic procedures for pulmonary lesions. Its role is increasing in the era of CT screening for lung cancer and precision medicine. The Korean Society of Thoracic Radiology developed the first evidence-based clinical guideline for PTNB in Korea by adapting pre-existing guidelines. The guideline provides 39 recommendations for the following four main domains of 12 key questions: the indications for PTNB, pre-procedural evaluation, procedural technique of PTNB and its accuracy, and management of post-biopsy complications. We hope that these recommendations can improve the diagnostic accuracy and safety of PTNB in clinical practice and promote standardization of the procedure nationwide.
RESUMO
Objective@#To compare native and post-contrast T1 mapping with late gadolinium enhancement (LGE) imaging for detectingand measuring the microvascular obstruction (MVO) area in reperfused acute myocardial infarction (MI). @*Materials and Methods@#This study included 20 patients with acute MI who had undergone 1.5T cardiovascular magneticresonance imaging (CMR) after reperfusion therapy. CMR included cine imaging, LGE, and T1 mapping (modified look-lockerinversion recovery). MI size was calculated from LGE by full-width at half-maximum technique. MVO was defined as an areawith low signal intensity (LGE) or as a region of visually distinguishable T1 values (T1 maps) within infarcted myocardium.Regional T1 values were measured in MVO, infarcted, and remote myocardium on T1 maps. MVO area was measured on andcompared among LGE, native, and post-contrast T1 maps. @*Results@#The mean MI size was 27.1 ± 9.7% of the left ventricular mass. Of the 20 identified MVOs, 18 (90%) were detectedon native T1 maps, while 10 (50%) were recognized on post-contrast T1 maps. The mean native T1 values of MVO, infarcted,and remote myocardium were 1013.5 ± 58.5, 1240.9 ± 55.8 (p < 0.001), and 1062.2 ± 55.8 ms (p = 0.169), respectively, whilethe mean post-contrast T1 values were 466.7 ± 26.8, 399.1 ± 21.3, and 585.2 ± 21.3 ms, respectively (p < 0.001). The meanMVO areas on LGE, native, and post-contrast T1 maps were 134.1 ± 81.2, 133.7 ± 80.4, and 117.1 ± 53.3 mm2, respectively.The median (interquartile range) MVO areas on LGE, native, and post-contrast T1 maps were 128.0 (58.1–215.4), 110.5(67.7–227.9), and 143.0 (76.7–155.3) mm2, respectively (p = 0.002). Concordance correlation coefficients for the MVO areabetween LGE and native T1 maps, LGE and post-contrast T1 maps, and native and post-contrast T1 maps were 0.770, 0.375,and 0.565, respectively. @*Conclusion@#MVO areas were accurately delineated on native T1 maps and showed high concordance with the areas measuredon LGE. However, post-contrast T1 maps had low detection rates and underestimated MVO areas. Collectively, native T1 mappingis a useful tool for detecting MVO within the infarcted myocardium.
RESUMO
This document is the third part of the guidelines for the interpretation and post-processing of cardiac magnetic resonance (CMR) studies. These consensus recommendations have been developed by a Consensus Committee of the Korean Society of Cardiovascular Imaging (KOSCI) to standardize the requirements for image interpretation and post-processing of CMR. This third part of the recommendations describes tissue characterization modules, including perfusion, late gadolinium enhancement, and T1- and T2 mapping. Additionally, this document provides guidance for visual and quantitative assessment, consisting of “What-to-See,” “How-To,” and common pitfalls for the analysis of each module. The Consensus Committee hopes that this document will contribute to the standardization of image interpretation and post-processing of CMR studies.
RESUMO
Image-guided localization materials are constantly evolving, providing options for the localization of small pulmonary nodules to guide minimally invasive thoracic surgery. Several preoperative methods have been developed to localize small pulmonary lesions prior to video-assisted thoracic surgery. These localization techniques can be categorized into 4 groups according to the materials used: localization with metallic materials (hook-wire, microcoil, or spiral coil), localization with dye (methylene blue or indigo carmine), localization with contrast agents (lipiodol, barium, or iodine contrast agents), and radiotracers (technetium-99m). However, the optimal localization method has not yet been established. In this review article, we discuss the various localization techniques and the advantages and disadvantages of localization techniques as well as the available safety and efficacy data on these techniques.
Assuntos
Bário , Corantes , Meios de Contraste , Índigo Carmim , Iodo , Pulmão , Métodos , Plantas , Cirurgia Torácica , Cirurgia Torácica Vídeoassistida , Tomografia Computadorizada por Raios X , UltrassonografiaRESUMO
Cardiovascular magnetic resonance imaging (CMR) is expected to be increasingly used in Korea due to technology advances and the expanded national insurance coverage of these tests. For improved patient care, it is crucial not only that CMR images are properly acquired but that they are accurately interpreted by well-trained personnel. In response to the increased demand for CMR, the Korean Society of Cardiovascular Imaging (KOSCI) has issued interpretation guidelines in conjunction with the Korean Society of Radiology (KSR). KOSCI has also created a formal Committee on CMR Guidelines to write updated practices. The members of this Committee review previously published interpretation guidelines and discuss the patterns of CMR use in Korea.
Assuntos
Angiografia , Coração , Cobertura do Seguro , Coreia (Geográfico) , Imageamento por Ressonância Magnética , Assistência ao PacienteRESUMO
Cardiac magnetic resonance (CMR) imaging is widely used in many areas of cardiovascular disease assessment. This is a practical, standard CMR protocol for beginners that is designed to be easy to follow and implement. This protocol guideline is based on previously reported CMR guidelines and includes sequence terminology used by vendors, essential MR physics, imaging planes, field strength considerations, MRI-conditional devices, drugs for stress tests, various CMR modules, and disease/symptom-based protocols based on a survey of cardiologists and various appropriate-use criteria. It will be of considerable help in planning and implementing tests. In addressing CMR usage and creating this protocol guideline, we particularly tried to include useful tips to overcome various practical issues and improve CMR imaging. We hope that this document will continue to standardize and simplify a patient-based approach to clinical CMR and contribute to the promotion of public health.
Assuntos
Doenças Cardiovasculares , Comércio , Teste de Esforço , Coração , Esperança , Imageamento por Ressonância Magnética , Saúde PúblicaRESUMO
Cardiovascular magnetic resonance imaging (CMR) is expected to be increasingly used in Korea due to technological advances and the expanded national insurance coverage of CMR assessments. For improved patient care, proper acquisition of CMR images as well as their accurate interpretation by well-trained personnel are equally important. In response to the increased demand for CMR, the Korean Society of Cardiovascular Imaging (KOSCI) has issued interpretation guidelines in conjunction with the Korean Society of Radiology. KOSCI has also created a formal Committee on CMR guidelines to create updated practices. The members of this committee review previously published interpretation guidelines and discuss the patterns of CMR use in Korea.
Assuntos
Angiografia , Coração , Cobertura do Seguro , Coreia (Geográfico) , Imageamento por Ressonância Magnética , Assistência ao PacienteRESUMO
Cardiac magnetic resonance (CMR) imaging is widely used in many areas of cardiovascular disease assessment. This is a practical, standard CMR protocol for beginners that is designed to be easy to follow and implement. This protocol guideline is based on previously reported CMR guidelines and includes sequence terminology used by vendors, essential MR physics, imaging planes, field strength considerations, MRI-conditional devices, drugs for stress tests, various CMR modules, and disease/symptom-based protocols based on a survey of cardiologists and various appropriate-use criteria. It will be of considerable help in planning and implementing tests. In addressing CMR usage and creating this protocol guideline, we particularly tried to include useful tips to overcome various practical issues and improve CMR imaging. We hope that this document will continue to standardize and simplify a patient-based approach to clinical CMR and contribute to the promotion of public health.
Assuntos
Doenças Cardiovasculares , Comércio , Teste de Esforço , Coração , Esperança , Imageamento por Ressonância Magnética , Saúde PúblicaRESUMO
This document is the third part of the guidelines for the protocol, the interpretation and post-processing of cardiac magnetic resonance (CMR) studies. These consensus recommendations have been developed by the Consensus Committee of the Korean Society of Cardiovascular Imaging to standardize the requirements for image interpretation and post-processing of CMR. This third part of the recommendations describes tissue characterization modules, including perfusion, late gadolinium enhancement, and T1- and T2 mapping. Additionally, this document provides guidance for visual and quantitative assessment consisting of “What-to-See,” “How-To,” and common pitfalls for the analysis of each module. The Consensus Committee hopes that this document will contribute to the standardization of image interpretation and post-processing of CMR studies.
Assuntos
Consenso , Gadolínio , Esperança , Imageamento por Ressonância Magnética , PerfusãoRESUMO
PURPOSE@#To evaluate the CT features of incidental breast lesions on chest CT and to suggest useful criteria for referral to a specialized breast unit.@*MATERIALS AND METHODS@#Between May 2009 and April 2014, enhanced chest CT examination reports containing the key word ‘breast’ were reviewed retrospectively. Patients who had incidental breast lesion and were referred to a specialized breast unit and then underwent pathological confirmation or follow-up over a 1-year period were included. Finally, 86 patients (all female, mean age, 48.9 ± 12.6 years) were enrolled. Two radiologists evaluated lesion characteristics, including size, shape, margins, and enhancement. The correlations between the CT features and pathologies were evaluated, and the diagnostic accuracy of CT features in various combinations was assessed.@*RESULTS@#Among the CT features, irregular shape, non-circumscribed margin, and high contrast enhancement were different between malignant and benign lesions (p < 0.05). The combination of non-circumscribed margin and high contrast enhancement had the highest accuracy (97.7%).@*CONCLUSION@#Reliable CT features for incidental malignant breast masses are irregular shape, non-circumscribed margin, and high contrast enhancement. The combination of non-circumscribed margin and high contrast enhancement could help distinguish incidental malignant breast lesions and indicate referral to a specialized breast unit.
RESUMO
PURPOSE: Circumferential pulmonary (PV) vein isolation (CPVI) is the most important treatment strategy for atrial fibrillation (AF). While understanding left atrial wall thickness around PVs (PVWT) prior to catheter ablation is important, its clinical implications are not known. This study aimed to evaluate PVWT characteristics according to underlying disease and to identify associations between PVWT and reconnections of PV potentials (PVPs) in redo ablation. MATERIALS AND METHODS: In 28 patients who underwent redo-AF ablation, PVWT and reconnected PVPs were evaluated at 12 sites (1–12 o'clock) around each PV. Clinical characteristics including stroke and CHA₂DS₂-VASc scores were analyzed according to the PVWT. RESULTS: The PVWT was thicker in males than females (p0.6 mm predicted PV reconnections with a sensitivity of 76.7% and specificity of 52.2% with an area under the curve of 0.695. CONCLUSION: Thick PVWs were associated with diabetes and heart failure, and also showed significant inverse correlations with stroke and the CHA₂DS₂-VASc score. Thick PVWs were associated with reconnected PVPs after the CPVI, which were related to AF recurrence.
Assuntos
Feminino , Humanos , Masculino , Fibrilação Atrial , Ablação por Cateter , Insuficiência Cardíaca , Veias Pulmonares , Recidiva , Sensibilidade e Especificidade , Acidente Vascular Cerebral , VeiasRESUMO
Cardiac magnetic resonance (CMR) imaging is widely used in various medical fields related to cardiovascular diseases. Rapid technological innovations in magnetic resonance imaging in recent times have resulted in the development of new techniques for CMR imaging. T1 and T2 image mapping sequences enable the direct quantification of T1, T2, and extracellular volume fraction (ECV) values of the myocardium, leading to the progressive integration of these sequences into routine CMR settings. Currently, T1, T2, and ECV values are being recognized as not only robust biomarkers for diagnosis of cardiomyopathies, but also predictive factors for treatment monitoring and prognosis. In this study, we have reviewed various T1 and T2 mapping sequence techniques and their clinical applications.