Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003673

RESUMO

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.


Assuntos
Herpesvirus Humano 1 , Perileno , Fotoquimioterapia , Perileno/farmacologia , Oxigênio Singlete , Antivirais/farmacologia , Antivirais/química , Fármacos Fotossensibilizantes/farmacologia
2.
Antibodies (Basel) ; 13(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38247566

RESUMO

CD47 acts as a defense mechanism for tumor cells by sending a "don't eat me" signal via its bond with SIRPα. With CD47's overexpression linked to poor cancer outcomes, its pathway has become a target in cancer immunotherapy. Though monoclonal antibodies offer specificity, they have limitations like the large size and production costs. Nanobodies, due to their small size and unique properties, present a promising therapeutic alternative. In our study, a high-affinity anti-CD47 nanobody was engineered from an immunized alpaca. We isolated a specific VHH from the phage library, which has nanomolar affinity to SIRPα, and constructed a streptavidin-based tetramer. The efficacy of the nanobody and its derivative was evaluated using various assays. The new nanobody demonstrated higher affinity than the monoclonal anti-CD47 antibody, B6H12.2. The nanobody and its derivatives also stimulated substantial phagocytosis of tumor cell lines and induced apoptosis in U937 cells, a response confirmed in both in vitro and in vivo settings. Our results underscore the potential of the engineered anti-CD47 nanobody as a promising candidate for cancer immunotherapy. The derived nanobody could offer a more effective, cost-efficient alternative to conventional antibodies in disrupting the CD47-SIRPα axis, opening doors for its standalone or combinatorial therapeutic applications in oncology.

3.
Biomolecules ; 13(11)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002341

RESUMO

Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA-DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems. Using optical and electrophoretic methods, we showed that stem 2-targeting oligonucleotide analogs induced PK unfolding at nanomolar concentrations, and this effect was particularly pronounced in the case of LNA. For the leading PK-unfolding LNA and CPS oligonucleotide analogs, we also demonstrated dose-dependent RSF inhibition in dual luciferase assays (DLAs). Finally, we showed that the leading oligonucleotide analogs reduced SARS-CoV-2 replication at subtoxic concentrations in the nanomolar range in two human cell lines. Our findings highlight the promise of PK targeting, illustrate the advantages and limitations of various types of DNA modifications and may promote the future development of oligonucleotide-based antivirals.


Assuntos
COVID-19 , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , Oligonucleotídeos Fosforotioatos/farmacologia , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , Antivirais/farmacologia , DNA/metabolismo , Replicação Viral , Conformação de Ácido Nucleico
4.
Antiviral Res ; 209: 105508, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581049

RESUMO

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Assuntos
COVID-19 , Perileno , Humanos , Antivirais/farmacologia , Antivirais/química , Uracila/farmacologia , Perileno/farmacologia , SARS-CoV-2
5.
Light Sci Appl ; 11(1): 38, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190528

RESUMO

Photodynamic therapy (PDT) is one of the most appealing photonic modalities for cancer treatment based on anticancer activity of light-induced photosensitizer-mediated reactive oxygen species (ROS), but a limited depth of light penetration into tissues does not make possible the treatment of deep-seated neoplasms and thus complicates its widespread clinical adoption. Here, we introduce the concept of genetically encoded bioluminescence resonance energy transfer (BRET)-activated PDT, which combines an internal light source and a photosensitizer (PS) in a single-genetic construct, which can be delivered to tumors seated at virtually unlimited depth and then triggered by the injection of a substrate to initiate their treatment. To illustrate the concept, we engineered genetic NanoLuc-miniSOG BRET pair, combining NanoLuc luciferase flashlight and phototoxic flavoprotein miniSOG, which generates ROS under luciferase-substrate injection. We prove the concept feasibility in mice bearing NanoLuc-miniSOG expressing tumor, followed by its elimination under the luciferase-substrate administration. Then, we demonstrate a targeted delivery of NanoLuc-miniSOG gene, via tumor-specific lentiviral particles, into a tumor, followed by its successful elimination, with tumor-growth inhibition (TGI) coefficient exceeding 67%, which confirms a great therapeutic potential of the proposed concept. In conclusion, this study provides proof-of-concept for deep-tissue "photodynamic" therapy without external light source that can be considered as an alternative for traditional PDT.

6.
Mol Ther Oncolytics ; 21: 110-118, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33981827

RESUMO

Many members of the enterovirus family are considered as promising oncolytic agents; however, their systemic administration is largely inefficient due to the rapid neutralization of the virus in the circulation and the barrier functions of the endothelium. We aimed to evaluate natural killer cells as carriers for the delivery of oncolytic enteroviruses, which would combine the effects of cell immunotherapy with virotherapy. We tested four strains of nonpathogenic enteroviruses against the glioblastoma cell line panel and evaluated the produced infectious titers. Next, we explored whether these virus strains could be delivered to the tumor by natural killer cell line NK-92, which is being actively evaluated as a clinically acceptable therapeutic. Several strains of enteroviruses demonstrated oncolytic properties, but only coxsackievirus A7 (CVA7) could replicate in NK-92 cells efficiently. We compared the delivery efficiency of CVA7 in vivo, using NK-92 cells and direct intravenous administration, and found significant advantages of cell delivery even after a single injection. This suggests that the NK-92 cell line can be utilized as a vehicle for the delivery of the oncolytic strain of CVA7, which would improve the clinical potential of this viral oncolytic for the treatment of glioblastoma multiforme and other forms of cancer.

7.
Plasmid ; 63(3): 143-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20064551

RESUMO

Gene silencing based on RNA interference is widely used in fundamental research and in practical applications. However, a commonly incomplete functional suppression represents a serious drawback of this technology. We describe a series of lentiviral vectors each containing a single or multiple shRNA-expression cassette(s) driven by a RNA-polymerase III specific promoter and localized within the 3'-LTR of the lentiviral DNA backbone. The vectors also contain an antibiotic-resistance gene that allows positive selection of recipient cells. The combined expression of three different shRNAs specific to a single mRNA was shown to improve dramatically the level of mRNA inhibition, while the use of three different RNA-polymerase III specific promoters avoids the loss of shRNA-expression cassettes through the homologous recombination. The vector system was used for successful simultaneous suppression of three related SESN1, SESN2 and SESN3 genes, which suggests its particular value for testing phenotypes of functionally redundant genes.


Assuntos
Regulação para Baixo/genética , Vetores Genéticos/genética , Lentivirus/genética , RNA Interferente Pequeno/metabolismo , Linhagem Celular , Humanos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , RNA Polimerase III/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetidas Terminais/genética
8.
Oncotarget ; 11(1): 22-30, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32002121

RESUMO

RIL/PDLIM4 gene was identified as a tumor suppressor, its expression is frequently altered in various types of malignancies. The product of RIL/PDLIM4 gene is an adapter protein involved in the actin cytoskeleton remolding and assembly of stress fibers crucial for cell motility and epithelial-mesenchymal transition. Although the exact mechanism tethering RIL to cancer development remains unknown some pieces of evidence suggest that RIL may act by suppressing activation of the proto-oncogene tyrosine-protein kinase Src. To further explore this issue we tested how different expression levels of RIL affected the activity of Src in breast cancer cell lines. RIL was ectopically overexpressed in the cell cultures with its relatively low endogenous level, or, otherwise, was downregulated by RNA interference. Whereas we observed no correlation between expression levels of RIL and activity of Src we found that in several cell lines elevated levels of RIL were associated with higher cell migratory activity along with the increased incidence of breast xenograft formation and metastasizing. The obtained data suggest that in some breast cancer models RIL may not act as Src kinase inhibitor, but rather play the role of a potential oncogene that promotes cell motility and contributes to cancer cells spreading.

9.
Biotechniques ; 63(2): 77-80, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803543

RESUMO

In nonpolar solvents, hydrophobic organic fluorophores often show bright fluorescence, whereas in polar media, they usually suffer from aggregation-caused quenching (ACQ). Here, we harnessed this solvatochromic behavior of a 1,3,5,7-tetramethyl-BODIPY derivative for cell staining and applied it to live-cell imaging and flow cytometry. As opposed to commercially available dyes, this BODIPY derivative showed excellent contrast immediately after staining and did not require any wash-off.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Imagem Óptica/métodos , Sobrevivência Celular , Citometria de Fluxo/métodos , Células HeLa , Humanos , Metilação , Microscopia de Fluorescência/métodos , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa