Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38706321

RESUMO

Antiviral peptides (AVPs) have shown potential in inhibiting viral attachment, preventing viral fusion with host cells and disrupting viral replication due to their unique action mechanisms. They have now become a broad-spectrum, promising antiviral therapy. However, identifying effective AVPs is traditionally slow and costly. This study proposed a new two-stage computational framework for AVP identification. The first stage identifies AVPs from a wide range of peptides, and the second stage recognizes AVPs targeting specific families or viruses. This method integrates contrastive learning and multi-feature fusion strategy, focusing on sequence information and peptide characteristics, significantly enhancing predictive ability and interpretability. The evaluation results of the model show excellent performance, with accuracy of 0.9240 and Matthews correlation coefficient (MCC) score of 0.8482 on the non-AVP independent dataset, and accuracy of 0.9934 and MCC score of 0.9869 on the non-AMP independent dataset. Furthermore, our model can predict antiviral activities of AVPs against six key viral families (Coronaviridae, Retroviridae, Herpesviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae) and eight viruses (FIV, HCV, HIV, HPIV3, HSV1, INFVA, RSV, SARS-CoV). Finally, to facilitate user accessibility, we built a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼dbAMP/AVP/.


Assuntos
Antivirais , Biologia Computacional , Peptídeos , Antivirais/farmacologia , Peptídeos/química , Biologia Computacional/métodos , Humanos , Vírus , Aprendizado de Máquina , Algoritmos
2.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36715277

RESUMO

N6-methyladinosine (m6A) modification is the most abundant co-transcriptional modification in eukaryotic RNA and plays important roles in cellular regulation. Traditional high-throughput sequencing experiments used to explore functional mechanisms are time-consuming and labor-intensive, and most of the proposed methods focused on limited species types. To further understand the relevant biological mechanisms among different species with the same RNA modification, it is necessary to develop a computational scheme that can be applied to different species. To achieve this, we proposed an attention-based deep learning method, adaptive-m6A, which consists of convolutional neural network, bi-directional long short-term memory and an attention mechanism, to identify m6A sites in multiple species. In addition, three conventional machine learning (ML) methods, including support vector machine, random forest and logistic regression classifiers, were considered in this work. In addition to the performance of ML methods for multi-species prediction, the optimal performance of adaptive-m6A yielded an accuracy of 0.9832 and the area under the receiver operating characteristic curve of 0.98. Moreover, the motif analysis and cross-validation among different species were conducted to test the robustness of one model towards multiple species, which helped improve our understanding about the sequence characteristics and biological functions of RNA modifications in different species.


Assuntos
Aprendizado de Máquina , RNA , Sequência de Bases , RNA/genética , Redes Neurais de Computação
3.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37742050

RESUMO

The emergence of multidrug-resistant bacteria is a critical global crisis that poses a serious threat to public health, particularly with the rise of multidrug-resistant Staphylococcus aureus. Accurate assessment of drug resistance is essential for appropriate treatment and prevention of transmission of these deadly pathogens. Early detection of drug resistance in patients is critical for providing timely treatment and reducing the spread of multidrug-resistant bacteria. This study aims to develop a novel risk assessment framework for S. aureus that can accurately determine the resistance to multiple antibiotics. The comprehensive 7-year study involved ˃20 000 isolates with susceptibility testing profiles of six antibiotics. By incorporating mass spectrometry and machine learning, the study was able to predict the susceptibility to four different antibiotics with high accuracy. To validate the accuracy of our models, we externally tested on an independent cohort and achieved impressive results with an area under the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91, and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81, respectively, for oxacillin, clindamycin, erythromycin and trimethoprim-sulfamethoxazole. In addition, the framework evaluated the level of multidrug resistance of the isolates by using the predicted drug resistance probabilities, interpreting them in the context of a multidrug resistance risk score and analyzing the performance contribution of different sample groups. The results of this study provide an efficient method for early antibiotic decision-making and a better understanding of the multidrug resistance risk of S. aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aprendizado de Máquina , Medição de Risco
4.
Anal Chem ; 96(4): 1538-1546, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38226973

RESUMO

Tuberculosis (TB) is a severe disease caused by Mycobacterium tuberculosis that poses a significant threat to human health. The emergence of drug-resistant strains has made the global fight against TB even more challenging. Antituberculosis peptides (ATPs) have shown promising results as a potential treatment for TB. However, conventional wet lab-based approaches to ATP discovery are time-consuming and costly and often fail to discover peptides with desired properties. To address these challenges, we propose a novel machine learning-based framework called ATPfinder that can significantly accelerate the discovery of ATP. Our approach integrates various efficient peptide descriptors and utilizes the deep forest algorithm to construct the model. This neural network-like cascading structure can effectively process and mine features without complex hyperparameter tuning. Our experimental results show that ATPfinder outperforms existing ATP prediction tools, achieving state-of-the-art performance with an accuracy of 89.3% and an MCC of 0.70. Moreover, our framework exhibits better robustness than baseline algorithms commonly used for other sequence analysis tasks. Additionally, the excellent interpretability of our model can assist researchers in understanding the critical features of ATP. Finally, we developed a downloadable desktop application to simplify the use of our framework for researchers. Therefore, ATPfinder can facilitate the discovery of peptide drugs and provide potential solutions for TB treatment. Our framework is freely available at https://github.com/lantianyao/ATPfinder/ (data sets and code) and https://awi.cuhk.edu.cn/dbAMP/ATPfinder.html (software).


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Peptídeos/farmacologia , Antituberculosos/farmacologia , Algoritmos , Tuberculose/tratamento farmacológico , Florestas , Trifosfato de Adenosina
5.
J Chem Inf Model ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946113

RESUMO

Enhancers are a class of noncoding DNA, serving as crucial regulatory elements in governing gene expression by binding to transcription factors. The identification of enhancers holds paramount importance in the field of biology. However, traditional experimental methods for enhancer identification demand substantial human and material resources. Consequently, there is a growing interest in employing computational methods for enhancer prediction. In this study, we propose a two-stage framework based on deep learning, termed CapsEnhancer, for the identification of enhancers and their strengths. CapsEnhancer utilizes chaos game representation to encode DNA sequences into unique images and employs a capsule network to extract local and global features from sequence "images". Experimental results demonstrate that CapsEnhancer achieves state-of-the-art performance in both stages. In the first and second stages, the accuracy surpasses the previous best methods by 8 and 3.5%, reaching accuracies of 94.5 and 95%, respectively. Notably, this study represents the pioneering application of computer vision methods to enhancer identification tasks. Our work not only contributes novel insights to enhancer identification but also provides a fresh perspective for other biological sequence analysis tasks.

6.
Nucleic Acids Res ; 50(D1): D460-D470, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850155

RESUMO

The last 18 months, or more, have seen a profound shift in our global experience, with many of us navigating a once-in-100-year pandemic. To date, COVID-19 remains a life-threatening pandemic with little to no targeted therapeutic recourse. The discovery of novel antiviral agents, such as vaccines and drugs, can provide therapeutic solutions to save human beings from severe infections; however, there is no specifically effective antiviral treatment confirmed for now. Thus, great attention has been paid to the use of natural or artificial antimicrobial peptides (AMPs) as these compounds are widely regarded as promising solutions for the treatment of harmful microorganisms. Given the biological significance of AMPs, it was obvious that there was a significant need for a single platform for identifying and engaging with AMP data. This led to the creation of the dbAMP platform that provides comprehensive information about AMPs and facilitates their investigation and analysis. To date, the dbAMP has accumulated 26 447 AMPs and 2262 antimicrobial proteins from 3044 organisms using both database integration and manual curation of >4579 articles. In addition, dbAMP facilitates the evaluation of AMP structures using I-TASSER for automated protein structure prediction and structure-based functional annotation, providing predictive structure information for clinical drug development. Next-generation sequencing (NGS) and third-generation sequencing have been applied to generate large-scale sequencing reads from various environments, enabling greatly improved analysis of genome structure. In this update, we launch an efficient online tool that can effectively identify AMPs from genome/metagenome and proteome data of all species in a short period. In conclusion, these improvements promote the dbAMP as one of the most abundant and comprehensively annotated resources for AMPs. The updated dbAMP is now freely accessible at http://awi.cuhk.edu.cn/dbAMP.


Assuntos
Peptídeos Antimicrobianos , Bases de Dados Factuais , Software , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Genômica , Fases de Leitura Aberta , Conformação Proteica , Proteômica
7.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474116

RESUMO

RNA modification plays a crucial role in cellular regulation. However, traditional high-throughput sequencing methods for elucidating their functional mechanisms are time-consuming and labor-intensive, despite extensive research. Moreover, existing methods often limit their focus to specific species, neglecting the simultaneous exploration of RNA modifications across diverse species. Therefore, a versatile computational approach is necessary for interpretable analysis of RNA modifications across species. A multi-scale biological language-based deep learning model is proposed for interpretable, sequential-level prediction of diverse RNA modifications. Benchmark comparisons across species demonstrate the model's superiority in predicting various RNA methylation types over current state-of-the-art methods. The cross-species validation and attention weight visualization also highlight the model's capability to capture sequential and functional semantics from genomic backgrounds. Our analysis of RNA modifications helps us find the potential existence of "biological grammars" in each modification type, which could be effective for mapping methylation-related sequential patterns and understanding the underlying biological mechanisms of RNA modifications.


Assuntos
Aprendizado Profundo , RNA , RNA/genética , Metilação de RNA , Metilação , Processamento de Proteína Pós-Traducional
8.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33197936

RESUMO

BACKGROUND: A mass spectrometry-based assessment of methicillin resistance in Staphylococcus aureus would have huge potential in addressing fast and effective prediction of antibiotic resistance. Since delays in the traditional antibiotic susceptibility testing, methicillin-resistant S. aureus remains a serious threat to human health. RESULTS: Here, linking a 7 years of longitudinal study from two cohorts in the Taiwan area of over 20 000 individually resolved methicillin susceptibility testing results, we identify associations of methicillin resistance with the demographics and mass spectrometry data. When combined together, these connections allow for machine-learning-based predictions of methicillin resistance, with an area under the receiver operating characteristic curve of >0.85 in both the discovery [95% confidence interval (CI) 0.88-0.90] and replication (95% CI 0.84-0.86) populations. CONCLUSIONS: Our predictive model facilitates early detection for methicillin resistance of patients with S. aureus infection. The large-scale antibiotic resistance study has unbiasedly highlighted putative candidates that could improve trials of treatment efficiency and inform on prescriptions.


Assuntos
Envelhecimento , Aprendizado de Máquina , Espectrometria de Massas , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Modelos Biológicos , Infecções Estafilocócicas/metabolismo , Adulto , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Taiwan/epidemiologia
9.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32672791

RESUMO

Recent studies have demonstrated that the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) could be used to detect superbugs, such as methicillin-resistant Staphylococcus aureus (MRSA). Due to an increasingly clinical need to classify between MRSA and methicillin-sensitive Staphylococcus aureus (MSSA) efficiently and effectively, we were motivated to develop a systematic pipeline based on a large-scale dataset of MS spectra. However, the shifting problem of peaks in MS spectra induced a low effectiveness in the classification between MRSA and MSSA isolates. Unlike previous works emphasizing on specific peaks, this study employs a binning method to cluster MS shifting ions into several representative peaks. A variety of bin sizes were evaluated to coalesce drifted or shifted MS peaks to a well-defined structured data. Then, various machine learning methods were performed to carry out the classification between MRSA and MSSA samples. Totally 4858 MS spectra of unique S. aureus isolates, including 2500 MRSA and 2358 MSSA instances, were collected by Chang Gung Memorial Hospitals, at Linkou and Kaohsiung branches, Taiwan. Based on the evaluation of Pearson correlation coefficients and the strategy of forward feature selection, a total of 200 peaks (with the bin size of 10 Da) were identified as the marker attributes for the construction of predictive models. These selected peaks, such as bins 2410-2419, 2450-2459 and 6590-6599 Da, have indicated remarkable differences between MRSA and MSSA, which were effective in the prediction of MRSA. The independent testing has revealed that the random forest model can provide a promising prediction with the area under the receiver operating characteristic curve (AUC) at 0.8450. When comparing to previous works conducted with hundreds of MS spectra, the proposed scheme demonstrates that incorporating machine learning method with a large-scale dataset of clinical MS spectra may be a feasible means for clinical physicians on the administration of correct antibiotics in shorter turn-around-time, which could reduce mortality, avoid drug resistance and shorten length of stay in hospital in the future.


Assuntos
Bases de Dados Factuais , Aprendizado de Máquina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estafilocócicas/sangue , Humanos
10.
J Chem Inf Model ; 63(24): 7886-7898, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38054927

RESUMO

Inflammation is a biological response to harmful stimuli, aiding in the maintenance of tissue homeostasis. However, excessive or persistent inflammation can precipitate a myriad of pathological conditions. Although current treatments such as NSAIDs, corticosteroids, and immunosuppressants are effective, they can have side effects and resistance issues. In this backdrop, anti-inflammatory peptides (AIPs) have emerged as a promising therapeutic approach against inflammation. Leveraging machine learning methods, we have the opportunity to accelerate the discovery and investigation of these AIPs more effectively. In this study, we proposed an advanced framework by ensemble machine learning and deep learning for AIP prediction. Initially, we constructed three individual models with extremely randomized trees (ET), gated recurrent unit (GRU), and convolutional neural networks (CNNs) with attention mechanism and then used stacking architecture to build the final predictor. By utilizing various sequence encodings and combining the strengths of different algorithms, our predictor demonstrated exemplary performance. On our independent test set, our model achieved an accuracy, MCC, and F1-score of 0.757, 0.500, and 0.707, respectively, clearly outperforming other contemporary AIP prediction methods. Additionally, our model offers profound insights into the feature interpretation of AIPs, establishing a valuable knowledge foundation for the design and development of future anti-inflammatory strategies.


Assuntos
Aprendizado Profundo , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Peptídeos/farmacologia , Inflamação/tratamento farmacológico , Algoritmos , Aprendizado de Máquina
11.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373494

RESUMO

One of the major challenges in cancer therapy lies in the limited targeting specificity exhibited by existing anti-cancer drugs. Tumor-homing peptides (THPs) have emerged as a promising solution to this issue, due to their capability to specifically bind to and accumulate in tumor tissues while minimally impacting healthy tissues. THPs are short oligopeptides that offer a superior biological safety profile, with minimal antigenicity, and faster incorporation rates into target cells/tissues. However, identifying THPs experimentally, using methods such as phage display or in vivo screening, is a complex, time-consuming task, hence the need for computational methods. In this study, we proposed StackTHPred, a novel machine learning-based framework that predicts THPs using optimal features and a stacking architecture. With an effective feature selection algorithm and three tree-based machine learning algorithms, StackTHPred has demonstrated advanced performance, surpassing existing THP prediction methods. It achieved an accuracy of 0.915 and a 0.831 Matthews Correlation Coefficient (MCC) score on the main dataset, and an accuracy of 0.883 and a 0.767 MCC score on the small dataset. StackTHPred also offers favorable interpretability, enabling researchers to better understand the intrinsic characteristics of THPs. Overall, StackTHPred is beneficial for both the exploration and identification of THPs and facilitates the development of innovative cancer therapies.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/metabolismo , Oligopeptídeos , Algoritmos , Aprendizado de Máquina
12.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901759

RESUMO

Cancer is one of the leading diseases threatening human life and health worldwide. Peptide-based therapies have attracted much attention in recent years. Therefore, the precise prediction of anticancer peptides (ACPs) is crucial for discovering and designing novel cancer treatments. In this study, we proposed a novel machine learning framework (GRDF) that incorporates deep graphical representation and deep forest architecture for identifying ACPs. Specifically, GRDF extracts graphical features based on the physicochemical properties of peptides and integrates their evolutionary information along with binary profiles for constructing models. Moreover, we employ the deep forest algorithm, which adopts a layer-by-layer cascade architecture similar to deep neural networks, enabling excellent performance on small datasets but without complicated tuning of hyperparameters. The experiment shows GRDF exhibits state-of-the-art performance on two elaborate datasets (Set 1 and Set 2), achieving 77.12% accuracy and 77.54% F1-score on Set 1, as well as 94.10% accuracy and 94.15% F1-score on Set 2, exceeding existing ACP prediction methods. Our models exhibit greater robustness than the baseline algorithms commonly used for other sequence analysis tasks. In addition, GRDF is well-interpretable, enabling researchers to better understand the features of peptide sequences. The promising results demonstrate that GRDF is remarkably effective in identifying ACPs. Therefore, the framework presented in this study could assist researchers in facilitating the discovery of anticancer peptides and contribute to developing novel cancer treatments.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/química , Algoritmos , Sequência de Aminoácidos , Redes Neurais de Computação
13.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674514

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in Acinetobacter baumannii, Acinetobacter nosocomialis, Enterococcus faecium, and Group B Streptococci (GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% (A. baumannii), 90.96% (A. nosocomialis), 78.54% (E. faecium), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Teorema de Bayes , Acinetobacter baumannii/química
14.
J Med Internet Res ; 24(1): e28036, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076405

RESUMO

BACKGROUND: The use of artificial intelligence (AI) in the medical domain has attracted considerable research interest. Inference applications in the medical domain require energy-efficient AI models. In contrast to other types of data in visual AI, data from medical laboratories usually comprise features with strong signals. Numerous energy optimization techniques have been developed to relieve the burden on the hardware required to deploy a complex learning model. However, the energy efficiency levels of different AI models used for medical applications have not been studied. OBJECTIVE: The aim of this study was to explore and compare the energy efficiency levels of commonly used machine learning algorithms-logistic regression (LR), k-nearest neighbor, support vector machine, random forest (RF), and extreme gradient boosting (XGB) algorithms, as well as four different variants of neural network (NN) algorithms-when applied to clinical laboratory datasets. METHODS: We applied the aforementioned algorithms to two distinct clinical laboratory data sets: a mass spectrometry data set regarding Staphylococcus aureus for predicting methicillin resistance (3338 cases; 268 features) and a urinalysis data set for predicting Trichomonas vaginalis infection (839,164 cases; 9 features). We compared the performance of the nine inference algorithms in terms of accuracy, area under the receiver operating characteristic curve (AUROC), time consumption, and power consumption. The time and power consumption levels were determined using performance counter data from Intel Power Gadget 3.5. RESULTS: The experimental results indicated that the RF and XGB algorithms achieved the two highest AUROC values for both data sets (84.7% and 83.9%, respectively, for the mass spectrometry data set; 91.1% and 91.4%, respectively, for the urinalysis data set). The XGB and LR algorithms exhibited the shortest inference time for both data sets (0.47 milliseconds for both in the mass spectrometry data set; 0.39 and 0.47 milliseconds, respectively, for the urinalysis data set). Compared with the RF algorithm, the XGB and LR algorithms exhibited a 45% and 53%-60% reduction in inference time for the mass spectrometry and urinalysis data sets, respectively. In terms of energy efficiency, the XGB algorithm exhibited the lowest power consumption for the mass spectrometry data set (9.42 Watts) and the LR algorithm exhibited the lowest power consumption for the urinalysis data set (9.98 Watts). Compared with a five-hidden-layer NN, the XGB and LR algorithms achieved 16%-24% and 9%-13% lower power consumption levels for the mass spectrometry and urinalysis data sets, respectively. In all experiments, the XGB algorithm exhibited the best performance in terms of accuracy, run time, and energy efficiency. CONCLUSIONS: The XGB algorithm achieved balanced performance levels in terms of AUROC, run time, and energy efficiency for the two clinical laboratory data sets. Considering the energy constraints in real-world scenarios, the XGB algorithm is ideal for medical AI applications.


Assuntos
Inteligência Artificial , Laboratórios Clínicos , Algoritmos , Conservação de Recursos Energéticos , Humanos , Aprendizado de Máquina
15.
Brief Bioinform ; 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31155657

RESUMO

In recent years, antimicrobial peptides (AMPs) have become an emerging area of focus when developing therapeutics hot spot residues of proteins are dominant against infections. Importantly, AMPs are produced by virtually all known living organisms and are able to target a wide range of pathogenic microorganisms, including viruses, parasites, bacteria and fungi. Although several studies have proposed different machine learning methods to predict peptides as being AMPs, most do not consider the diversity of AMP activities. On this basis, we specifically investigated the sequence features of AMPs with a range of functional activities, including anti-parasitic, anti-viral, anti-cancer and anti-fungal activities and those that target mammals, Gram-positive and Gram-negative bacteria. A new scheme is proposed to systematically characterize and identify AMPs and their functional activities. The 1st stage of the proposed approach is to identify the AMPs, while the 2nd involves further characterization of their functional activities. Sequential forward selection was employed to extract potentially informative features that are possibly associated with the functional activities of the AMPs. These features include hydrophobicity, the normalized van der Waals volume, polarity, charge and solvent accessibility-all of which are essential attributes in classifying between AMPs and non-AMPs. The results revealed the 1st stage AMP classifier was able to achieve an area under the receiver operating characteristic curve (AUC) value of 0.9894. During the 2nd stage, we found pseudo amino acid composition to be an informative attribute when differentiating between AMPs in terms of their functional activities. The independent testing results demonstrated that the AUCs of the multi-class models were 0.7773, 0.9404, 0.8231, 0.8578, 0.8648, 0.8745 and 0.8672 for anti-parasitic, anti-viral, anti-cancer, anti-fungal AMPs and those that target mammals, Gram-positive and Gram-negative bacteria, respectively. The proposed scheme helps facilitate biological experiments related to the functional analysis of AMPs. Additionally, it was implemented as a user-friendly web server (AMPfun, http://fdblab.csie.ncu.edu.tw/AMPfun/index.html) that allows individuals to explore the antimicrobial functions of peptides of interest.

16.
Int J Mol Sci ; 21(3)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024233

RESUMO

Because of the rapid development of multidrug resistance, conventional antibiotics cannot kill pathogenic bacteria efficiently. New antibiotic treatments such as antimicrobial peptides (AMPs) can provide a possible solution to the antibiotic-resistance crisis. However, the identification of AMPs using experimental methods is expensive and time-consuming. Meanwhile, few studies use amino acid compositions (AACs) and physicochemical properties with different sequence lengths against different organisms to predict AMPs. Therefore, the major purpose of this study is to identify AMPs on seven categories of organisms, including amphibians, humans, fish, insects, plants, bacteria, and mammals. According to the one-rule attribute evaluation, the selected features were used to construct the predictive models based on the random forest algorithm. Compared to the accuracies of iAMP-2L (a web-server for identifying AMPs and their functional types), ADAM (a database of AMP), and MLAMP (a multi-label AMP classifier), the proposed method yielded higher than 92% in predicting AMPs on each category. Additionally, the sensitivities of the proposed models in the prediction of AMPs of seven organisms were higher than that of all other tools. Furthermore, several physicochemical properties (charge, hydrophobicity, polarity, polarizability, secondary structure, normalized van der Waals volume, and solvent accessibility) of AMPs were investigated according to their sequence lengths. As a result, the proposed method is a practical means to complement the existing tools in the characterization and identification of AMPs in different organisms.


Assuntos
Algoritmos , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Animais , Antibacterianos/análise , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/análise , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos
17.
BMC Bioinformatics ; 20(Suppl 19): 703, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870283

RESUMO

BACKGROUND: Group B streptococcus (GBS) is an important pathogen that is responsible for invasive infections, including sepsis and meningitis. GBS serotyping is an essential means for the investigation of possible infection outbreaks and can identify possible sources of infection. Although it is possible to determine GBS serotypes by either immuno-serotyping or geno-serotyping, both traditional methods are time-consuming and labor-intensive. In recent years, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been reported as an effective tool for the determination of GBS serotypes in a more rapid and accurate manner. Thus, this work aims to investigate GBS serotypes by incorporating machine learning techniques with MALDI-TOF MS to carry out the identification. RESULTS: In this study, a total of 787 GBS isolates, obtained from three research and teaching hospitals, were analyzed by MALDI-TOF MS, and the serotype of the GBS was determined by a geno-serotyping experiment. The peaks of mass-to-charge ratios were regarded as the attributes to characterize the various serotypes of GBS. Machine learning algorithms, such as support vector machine (SVM) and random forest (RF), were then used to construct predictive models for the five different serotypes (Types Ia, Ib, III, V, and VI). After optimization of feature selection and model generation based on training datasets, the accuracies of the selected models attained 54.9-87.1% for various serotypes based on independent testing data. Specifically, for the major serotypes, namely type III and type VI, the accuracies were 73.9 and 70.4%, respectively. CONCLUSION: The proposed models have been adopted to implement a web-based tool (GBSTyper), which is now freely accessible at http://csb.cse.yzu.edu.tw/GBSTyper/, for providing efficient and effective detection of GBS serotypes based on a MALDI-TOF MS spectrum. Overall, this work has demonstrated that the combination of MALDI-TOF MS and machine intelligence could provide a practical means of clinical pathogen testing.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptococcus/classificação , Aprendizado de Máquina , Sorotipagem
18.
Artigo em Inglês | MEDLINE | ID: mdl-38059128

RESUMO

Methamphetamine use disorder (MUD) is an illness associated with severe health consequences. Virtual reality (VR) is used to induce the drug-cue reactivity and significant EEG and ECG abnormalities were found in MUD patients. However, whether a link exists between EEG and ECG abnormalities in patients with MUD during exposure to drug cues remains unknown. This is important from the therapeutic viewpoint because different treatment strategies may be applied when EEG abnormalities and ECG irregularities are complications of MUD. We designed a VR system with drug cues and EEG and ECG were recorded during VR exposure. Sixteen patients with MUD and sixteen healthy subjects were recruited. Statistical tests and Pearson correlation were employed to analyze the EEG and ECG. The results showed that, during VR induction, the patients with MUD but not healthy controls showed significant [Formula: see text] and [Formula: see text] power increases when the stimulus materials were most intense. This finding indicated that the stimuli are indiscriminate to healthy controls but meaningful to patients with MUD. Five heart rate variability (HRV) indexes significantly differed between patients and controls, suggesting abnormalities in the reaction of patient's autonomic nervous system. Importantly, significant relations between EEG and HRV indexes changes were only identified in the controls, but not in MUD patients, signifying a disruption of brain-heart relations in patients. Our findings of stimulus-specific EEG changes and the impaired brain-heart relations in patients with MUD shed light on the understanding of drug-cue reactivity and may be used to design diagnostic and/or therapeutic strategies for MUD.


Assuntos
Metanfetamina , Realidade Virtual , Humanos , Metanfetamina/efeitos adversos , Sinais (Psicologia) , Encéfalo , Frequência Cardíaca/fisiologia
19.
iScience ; 27(4): 109333, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38523792

RESUMO

Kinases as important enzymes can transfer phosphate groups from high-energy and phosphate-donating molecules to specific substrates and play essential roles in various cellular processes. Existing algorithms for kinase activity from phosphorylated proteomics data are often costly, requiring valuable samples. Moreover, methods to extract kinase activities from bulk RNA sequencing data remain undeveloped. In this study, we propose a computational framework KinPred-RNA to derive kinase activities from bulk RNA-sequencing data in cancer samples. KinPred-RNA framework, using the extreme gradient boosting (XGBoost) regression model, outperforms random forest regression, multiple linear regression, and support vector machine regression models in predicting kinase activities from cancer-related RNA sequencing data. Efficient gene signatures from the LINCS-L1000 dataset were used as inputs for KinPred-RNA. The results highlight its potential to be related to biological function. In conclusion, KinPred RNA constitutes a significant advance in cancer research by potentially facilitating the identification of cancer.

20.
Protein Sci ; 33(6): e5006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723168

RESUMO

The emergence and spread of antibiotic-resistant bacteria pose a significant public health threat, necessitating the exploration of alternative antibacterial strategies. Antibacterial peptide (ABP) is a kind of antimicrobial peptide (AMP) that has the potential ability to fight against bacteria infection, offering a promising avenue for developing novel therapeutic interventions. This study introduces AMPActiPred, a three-stage computational framework designed to identify ABPs, characterize their activity against diverse bacterial species, and predict their activity levels. AMPActiPred employed multiple effective peptide descriptors to effectively capture the compositional features and physicochemical properties of peptides. AMPActiPred utilized deep forest architecture, a cascading architecture similar to deep neural networks, capable of effectively processing and exploring original features to enhance predictive performance. In the first stage, AMPActiPred focuses on ABP identification, achieving an Accuracy of 87.6% and an MCC of 0.742 on an elaborate dataset, demonstrating state-of-the-art performance. In the second stage, AMPActiPred achieved an average GMean at 82.8% in identifying ABPs targeting 10 bacterial species, indicating AMPActiPred can achieve balanced predictions regarding the functional activity of ABP across this set of species. In the third stage, AMPActiPred demonstrates robust predictive capabilities for ABP activity levels with an average PCC of 0.722. Furthermore, AMPActiPred exhibits excellent interpretability, elucidating crucial features associated with antibacterial activity. AMPActiPred is the first computational framework capable of predicting targets and activity levels of ABPs. Finally, to facilitate the utilization of AMPActiPred, we have established a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼AMPActiPred/.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Biologia Computacional/métodos , Redes Neurais de Computação , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa