RESUMO
This paper reports a heat transfer advancement in the cryogenic quenching process. An experiment was performed to evaluate the enhancement of quenching heat transfer by the use of metal tubes with low thermal conductivity coating layers. Four coating thicknesses with various coolant mass flow rates of liquid nitrogen were investigated. The results indicated that the tube inner surface coating greatly enhanced the quenching efficiency. The quenching efficiency was found to increase with increasing number of coating layers, and the efficiency also increased with decreasing mass flow rates. In general, the efficiencies cover a range between 40.6% and 80%. Comparing to the bare surface case, the percentage increase in the quenching efficiency was the minimum at 4.2% for a single coated layer at the highest flow rate and the maximum of 109.1% for four coated layers at the lowest flow rate. The coated tubes could save up to 53% in the amount of cryogen consumption.
RESUMO
The space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids and moons of other planets is one of the biggest challenges for scientists and engineers for the new millennium. The enabling of in-space cryogenic rocket engines and the Lower-Earth-Orbit (LEO) cryogenic fuel depots for these future manned and robotic space exploration missions begins with the technology development of advanced cryogenic thermal-fluid management systems for the propellant transfer line and storage tank system. One of the key thermal-fluid management operations is the chilldown and filling of the propellant storage tank in space. As a result, highly energy efficient, breakthrough concepts for quenching heat transfer to conserve and minimize the cryogen consumption during chilldown have become the focus of engineering research and development, especially for the deep-space mission to Mars. In this paper, we introduce such thermal transport concepts and demonstrate their feasibilities in space for cryogenic propellant storage tank chilldown and filling in a simulated space microgravity condition on board an aircraft flying a parabolic trajectory. In order to maximize the storage tank chilldown thermal efficiency for the least amount of required cryogen consumption, the breakthrough quenching heat transfer concepts developed include the combination of charge-hold-vent (CHV) and no-vent-hold (NVF). The completed flight experiments successfully demonstrated the feasibility of the concepts and discovered that spray cooling combined with hold and vent is more efficient than the pure spray cooling for storage tank chilldown in microgravity. In microgravity, the data shows that the CHV thermal efficiency can reach 39.5%. The CHV efficiency in microgravity is 6.9% lower than that in terrestrial gravity. We also found that pulsing the spray can increase CHV efficiency by 6.1% in microgravity.
RESUMO
In-space cryogenic propulsion will play a vital role in NASA's return to the Moon mission and future mission to Mars. The enabling of in-space cryogenic engines and cryogenic fuel depots for these future manned and robotic space exploration missions begins with the technology development of advanced cryogenic thermal-fluid management systems for the propellant transfer lines and storage system. Before single-phase liquid can flow to the engine or spacecraft receiver tank, the connecting transfer line and storage tank must first be chilled down to cryogenic temperatures. The most direct and simplest method to quench the line and the tank is to use the cold propellant itself that results in the requirement of minimizing propellant consumption during chilldown. In view of the needs stated above, a highly efficient thermal-fluid management technology must be developed to consume the minimum amount of cryogen during chilldown of a transfer line and a storage tank. In this paper, we suggest the use of the cryogenic spray for storage tank chilldown. We have successfully demonstrated its feasibility and high efficiency in a simulated space microgravity condition. In order to maximize the storage tank chilldown efficiency for the least amount of cryogen consumption, the technology adopted included cryogenic spray cooling, Teflon thin-film coating of the simulated tank surface, and spray flow pulsing. The completed flight experiments successfully demonstrated that spray cooling is the most efficient cooling method for the tank chilldown in microgravity. In microgravity, Teflon coating alone can improve the efficiency up to 72% and the efficiency can be improved up to 59% by flow pulsing alone. However, Teflon coating together with flow pulsing was found to substantially enhance the chilldown efficiency in microgravity for up to 113%.
RESUMO
The enabling of in-space cryogenic engines and cryogenic fuel depots for future manned and robotic space exploration missions begins with technology development of advanced cryogenic fluid management systems upstream in the propellant feed system. Before single-phase liquid can flow to the engine or customer spacecraft receiver tank, the connecting transfer line must first be chilled down to cryogenic temperatures. The most direct and simplest method to quench the line is to use the cold propellant itself. When a cryogenic fluid is introduced into a warm transfer system, two-phase flow quenching ensues. While boiling is well known to be a highly efficient mode of heat transfer, previous work has shown this efficiency is lowered in reduced gravity. Due to the projected cost of launching and storing cryogens in space, it is desired to perform this chilldown process using the least amount of propellant possible, especially given the desire for reusable systems and thus multiple transfers. This paper presents an assessment of two revolutionary new performance enhancements that reduce the amount of propellant consumed during chilldown while in a microgravity environment. Twenty-eight cryogenic transfer line chilldown experiments were performed onboard four parabolic flights to examine the independent as well as combined effect of using low thermally conductive coatings and pulse flow on the chilldown process. Across a range of Reynolds numbers, results show the combination significantly enhances performance in microgravity, with a reduction in consumed mass up to 75% relative to continuous flow for a bare transfer line.
RESUMO
The extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA's biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.
RESUMO
All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.
RESUMO
The main objective of this study is to investigate the thermal profiles of a trailer-scale gasifier in different zones during the course of gasification and also to elaborate on the design, characteristics and performance of the gasification system using different biomass feedstock. The purpose is to emphasize on the effectiveness of distributed power generation systems and demonstrate the feasibility of such gasification systems in real world scenarios, where the lingo-cellulosic biomass resources are widely available and distributed across the board. Experimental data on the thermal profiles with respect to five different zones in the gasifier and a comprehensive thermal-chemical equilibrium model to predict the syngas composition are presented in detail. Four different feedstock-pine wood, horse manure, red oak, and cardboard were evaluated. The effects of C, H, O content variations in the feedstock on the thermal profiles, and the efficiency and viability of the trailer-scale gasifier are also discussed.
Assuntos
Biocombustíveis , Reatores Biológicos , Biotecnologia/instrumentação , Lignina/metabolismo , Modelos Químicos , Biotecnologia/métodos , Esterco/análise , Papel , Pinus/química , Quercus/química , MadeiraRESUMO
A novel 'fluid-wall thermal equilibrium model' for the wall-fluid heat transfer boundary condition has been developed in this paper to capture the nano-scale physics of transient phase transition of a thin liquid argon film on a heated platinum surface and the eventual colloidal adsorption phenomenon as the evaporation is diminishing using molecular dynamics. The objective of this work is to provide microscopic characterizations of the dynamic thermal energy transport mechanisms during the liquid film evaporation and also the resulting non-evaporable colloidal adsorbed liquid layer at the end of the evaporation process. A nanochannel is constructed of platinum (Pt) wall atoms with argon as the working fluid. The proposed model is validated by heating liquid argon between two Pt walls and comparing the thermal conductivity and change in internal energy to thermodynamic properties of argon. Later on, phase change process is studied by simulating evaporation of a thin liquid argon film on a Pt wall using the proposed model. Gradual evaporation of the liquid film occurs although the film does not vaporize completely. An ultra-thin layer of liquid argon is noticed to have "adsorbed" on the platinum surface. An analysis similar to the theoretical study by Hamaker (1937) is performed for the non-evaporating film and the value of the Hamaker-type constant falls in the typical range. This analysis is done to quantify the non-evaporating film with an attempt to use molecular dynamics simulation results in continuum mechanics.
RESUMO
Pool boiling experiments from a platinum wire heater in FC-72 liquid were conducted under terrestrial and microgravity conditions, both with and without the presence of a high-intensity acoustic standing wave within the fluid. The purpose of this research was to study the interaction between an acoustic field and a pool boiling system in normal gravity and microgravity. The absence of buoyancy in microgravity complicates the process of boiling. The acoustic force on a vapor bubble generated from a heated wire in a standing wave was shown to be able to play the role of buoyancy in microgravity. The microgravity environment was achieved with 0.6 and 2.1-s drop towers. The sound was transmitted through the fluid medium by means of a half wavelength sonic transducer driven at 10.18 kHz. At high enough acoustic pressure amplitudes cavitation and streaming began playing an important role in vapor bubble dynamics and heat transfer. Several different fixed heat fluxes were chosen for the microgravity experiment and the effects of acoustics on the surface temperature of the heater were recorded and the vapor bubble movement was filmed. Video images of the pool boiling processes and heat transfer data are presented.