Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Biol Chem ; 300(4): 107198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508312

RESUMO

Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease. Despite its importance, the specific mechanisms regulating PINK1 protein stability have remained unclear. This study reveals a cytoplasmic interaction between PINK1 and F-box and WD repeat domain-containing 7ß (FBW7ß) in mammalian cells. FBW7ß, a component of the Skp1-Cullin-1-F-box protein complex-type ubiquitin ligase, is instrumental in recognizing substrates. Our findings demonstrate that FBW7ß regulates PINK1 stability through the Skp1-Cullin-1-F-box protein complex and the proteasome pathway. It facilitates the K48-linked polyubiquitination of PINK1, marking it for degradation. When FBW7 is absent, PINK1 accumulates, leading to heightened mitophagy triggered by carbonyl cyanide 3-chlorophenylhydrazone treatment. Moreover, exposure to the toxic compound staurosporine accelerates PINK1 degradation via FBW7ß, correlating with increased cell death. This study unravels the intricate mechanisms controlling PINK1 protein stability and sheds light on the novel role of FBW7ß. These findings deepen our understanding of PINK1-related pathologies and potentially pave the way for therapeutic interventions.


Assuntos
Proteína 7 com Repetições F-Box-WD , Proteínas Quinases , Proteólise , Ubiquitinação , Humanos , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Células HEK293 , Mitofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética
2.
J Biol Chem ; 300(4): 107206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519031

RESUMO

Melanoma is a type of skin cancer that originates in melanin-producing melanocytes. It is considered a multifactorial disease caused by both genetic and environmental factors, such as UV radiation. Dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) phosphorylates many substrates involved in signaling pathways, cell survival, cell cycle control, differentiation, and neuronal development. However, little is known about the cellular function of DYRK3, one of the five members of the DYRK family. Interestingly, it was observed that the expression of DYRK3, as well as p62 (a multifunctional signaling protein), is highly enhanced in most melanoma cell lines. This study aimed to investigate whether DYRK3 interacts with p62, and how this affects melanoma progression, particularly in melanoma cell lines. We found that DYRK3 directly phosphorylates p62 at the Ser-207 and Thr-269 residue. Phosphorylation at Thr-269 of p62 by DYRK3 increased the interaction of p62 with tumor necrosis factor receptor-associated factor 6 (TRAF6), an already known activator of mammalian target of rapamycin complex 1 (mTORC1) in the mTOR-involved signaling pathways. Moreover, the phosphorylation of p62 at Thr-269 promoted the activation of mTORC1. We also found that DYRK3-mediated phosphorylation of p62 at Thr-269 enhanced the growth of melanoma cell lines and melanoma progression. Conversely, DYRK3 knockdown or blockade of p62-T269 phosphorylation inhibited melanoma growth, colony formation, and cell migration. In conclusion, we demonstrated that DYRK3 phosphorylates p62, positively modulating the p62-TRAF6-mTORC1 pathway in melanoma cells. This finding suggests that DYRK3 suppression may be a novel therapy for preventing melanoma progression by regulating the mTORC1 pathway.


Assuntos
Melanoma , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Quinases Dyrk , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética
3.
J Biol Chem ; 299(3): 102909, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646384

RESUMO

Parkinson's disease (PD) is a degenerative disorder of the central nervous system that affects 1% of the population over the age of 60. Although aging is one of the main risk factors for PD, the pathogenic mechanism of this disease remains unclear. Mutations in the F-box-only protein 7 (FBXO7) gene have been previously found to cause early onset autosomal recessive familial PD. FBXO7 is an adaptor protein in the SKP1-Cullin-1-F-box (SCF) E3 ligase complex that facilitates the ubiquitination of substrates. Sirtuin 7 (SIRT7) is an NAD+-dependent histone deacetylase that regulates aging and stress responses. In this study, we identified FBXO7 as a novel E3 ligase for SIRT7 that negatively regulates intracellular SIRT7 levels through SCF-dependent Lys-48-linked polyubiquitination and proteasomal degradation. Consequently, we show that FBXO7 promoted the blockade of SIRT7 deacetylase activity, causing an increase in acetylated histone 3 levels at the Lys-18 and Lys-36 residues and the repression of downstream RPS20 gene transcription. Moreover, we demonstrate that treatment with hydrogen peroxide triggered the FBXO7-mediated degradation of SIRT7, leading to mammalian cell death. In particular, the PD-linked FBXO7-R498X mutant, which reduced SCF-dependent E3 ligase activity, did not affect the stability of SIRT7. Collectively, these findings suggest that FBXO7 negatively regulates SIRT7 stability and may suppress the cytoprotective effects of SIRT7 during hydrogen peroxide-induced mammalian cell death.


Assuntos
Proteínas F-Box , Doença de Parkinson , Sirtuínas , Animais , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas F-Box/metabolismo , Ubiquitinação , Doença de Parkinson/metabolismo , Morte Celular , Mamíferos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
4.
J Biol Chem ; 298(10): 102464, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36075291

RESUMO

Apoptosis-inducing factor (AIF) is a mitochondrion-localized flavoprotein with NADH oxidase activity. AIF normally acts as an oxidoreductase to catalyze the transfer of electrons between molecules, but it can also kill cells when exposed to certain stimuli. For example, intact AIF is cleaved upon exposure to DNA-damaging agents such as etoposide, and truncated AIF (tAIF) is released from the mitochondria to the cytoplasm and translocated to the nucleus where it induces apoptosis. Although the serial events during tAIF-mediated apoptosis and the transition of AIF function have been widely studied from various perspectives, their underlying regulatory mechanisms and the factors involved are not fully understood. Here, we demonstrated that tAIF is a target of the covalent conjugation of the ubiquitin-like moiety ISG15 (referred to as ISGylation), which is mediated by the ISG15 E3 ligase HERC5. In addition, ISGylation increases the stability of tAIF protein as well as its K6-linked polyubiquitination. Moreover, we found that ISGylation increases the nuclear translocation of tAIF upon cytotoxic etoposide treatment, subsequently causing apoptotic cell death in human lung A549 carcinoma cells. Collectively, these results suggest that HERC5-mediated ISG15 conjugation is a key factor in the positive regulation of tAIF-mediated apoptosis, highlighting a novel role of posttranslational ISG15 modification as a switch that allows cells to live or die under the stress that triggers tAIF release.


Assuntos
Fator de Indução de Apoptose , Ubiquitinas , Humanos , Apoptose , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Etoposídeo/farmacologia , Ubiquitinas/genética , Ubiquitinas/metabolismo , Células A549
5.
J Biol Chem ; 296: 100245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33380426

RESUMO

Down syndrome (DS) is mainly caused by an extra copy of chromosome 21 (trisomy 21), and patients display a variety of developmental symptoms, including characteristic facial features, physical growth delay, intellectual disability, and neurodegeneration (i.e., Alzheimer's disease; AD). One of the pathological hallmarks of AD is insoluble deposits of neurofibrillary tangles (NFTs) that consist of hyperphosphorylated tau. The human DYRK1A gene is mapped to chromosome 21, and the protein is associated with the formation of inclusion bodies in AD. For example, DYRK1A directly phosphorylates multiple serine and threonine residues of tau, including Thr212. However, the mechanism underpinning DYRK1A involvement in Trisomy 21-related pathological tau aggregation remains unknown. Here, we explored a novel regulatory mechanism of DYRK1A and subsequent tau pathology through a phosphatase. Using LC-MS/MS technology, we analyzed multiple DYRK1A-binding proteins, including PPM1B, a member of the PP2C family of Ser/Thr protein phosphatases, in HEK293 cells. We found that PPM1B dephosphorylates DYRK1A at Ser258, contributing to the inhibition of DYRK1A activity. Moreover, PPM1B-mediated dephosphorylation of DYRK1A reduced tau phosphorylation at Thr212, leading to inhibition of toxic tau oligomerization and aggregation. In conclusion, our study demonstrates that DYRK1A autophosphorylates Ser258, the dephosphorylation target of PPM1B, and PPM1B negatively regulates DYRK1A activity. This finding also suggests that PPM1B reduces the toxic formation of phospho-tau protein via DYRK1A modulation, possibly providing a novel cellular protective mechanism to regulate toxic tau-mediated neuropathology in AD of DS.


Assuntos
Doença de Alzheimer/genética , Síndrome de Down/genética , Proteína Fosfatase 2C/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas tau/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Proteínas de Transporte/genética , Cromatografia Líquida , Síndrome de Down/complicações , Síndrome de Down/patologia , Células HEK293 , Humanos , Degeneração Neural , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Fosfoproteínas Fosfatases/genética , Fosforilação/genética , Agregação Patológica de Proteínas/genética , Espectrometria de Massas em Tandem , Quinases Dyrk
6.
J Biol Chem ; 297(6): 101426, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800438

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of midbrain dopamine neurons in the substantia nigra. Mutations in the F-box only protein 7 gene (Fbxo7) have been reported to cause an autosomal recessive form of early-onset familial PD. FBXO7 is a part of the SKP1-Cullin1-F-box (SCF) E3 ubiquitin ligase complex, which mediates ubiquitination of numerous substrates. FBXO7 also regulates mitophagy, cell growth, and proteasome activity. A member of the FOXO family, the transcription factor FOXO4, is also known to modulate several cellular responses, including cell cycle progression and apoptosis; however, the relationship between FBXO7 and FOXO4 has not been investigated. In this study, we determined that FBXO7 binds to FOXO4 and negatively regulates intracellular FOXO4 levels. Interestingly, we also found that FBXO7-mediated degradation of FOXO4 did not occur through either of two major proteolysis systems, the ubiquitin-proteasome system or the lysosome-autophagy pathway, although it was blocked by a caspase 8-specific inhibitor and caspase 8-knockdown. Moreover, intracellular FOXO4 levels were greatly reduced in dopaminergic MN9D cells following treatment with neurotoxic 6-hydroxydopamine (6-OHDA), which was produced upon FBXO7-mediated and caspase 8-mediated proteolysis. Taken together, these results suggest that FOXO4 is negatively regulated in FBXO7-linked PD through caspase 8 activation, suppressing the cytoprotective effect of FOXO4 during 6-OHDA-induced neuronal cell death.


Assuntos
Caspase 8/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Proteólise , Animais , Caspase 8/genética , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , Células MCF-7 , Masculino , Camundongos , Doença de Parkinson/genética
7.
J Biol Chem ; 293(4): 1286-1297, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29242192

RESUMO

Mutations in the gene for the serine/threonine protein kinase PTEN-induced putative kinase 1 (PINK1) are the second most frequent cause of autosomal recessive Parkinson's disease (PD). Via its kinase activity, PINK1 regulates neuronal cell survival and mitochondrial quality control. Numerous reports have revealed that PINK1 has diverse and physiologically significant functions, and therefore its activity should be tightly regulated. However, the molecular mechanisms regulating PINK1 stability and the modulator(s) involved have not been elucidated. In this study, we demonstrate that the ubiquitin E3 ligase carboxyl terminus of Hsp70-interacting protein (CHIP) promotes PINK1 ubiquitination and decreases its steady-state levels. Moreover, PINK1 levels were strongly reduced in HEK293 and SH-SY5Y cells exposed to the apoptosis-inducer staurosporine. Of note, we found that this reduction resulted from CHIP-mediated PINK1 ubiquitination. Accordingly, siRNA-mediated CHIP knockdown reduced susceptibility to staurosporine-induced cell death. Taken together, these findings suggest that CHIP plays a role in negative regulation of PINK1 stability and may suppress PINK1's cytoprotective effect during staurosporine-induced mammalian cell death. We propose that this PINK1 regulatory pathway might contribute to Parkinson's disease pathogenesis.


Assuntos
Apoptose/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Proteólise/efeitos dos fármacos , Estaurosporina/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/genética , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
8.
Hum Mol Genet ; 26(1): 1-18, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798112

RESUMO

Parkinson's disease (PD) is characterized by slow, progressive degeneration of dopaminergic neurons in the substantia nigra. The cause of neuronal death in PD is largely unknown, but several genetic loci, including leucine-rich repeat kinase 2 (LRRK2), have been identified. LRRK2 has guanosine triphosphatase (GTPase) and kinase activities, and mutations in LRRK2 are the major cause of autosomal-dominant familial PD. Histone deacetylases (HDACs) remove acetyl groups from lysine residues on histone tails, promoting transcriptional repression via condensation of chromatin. Here, we demonstrate that LRRK2 binds to and directly phosphorylates HDAC3 at Ser-424, thereby stimulating HDAC activity. Specifically, LRRK2 promoted the deacetylation of Lys-5 and Lys-12 on histone H4, causing repression of gene transcription. Moreover, LRRK2 stimulated nuclear translocation of HDAC3 via the phoshorylation of karyopherin subunit α2 and α6. HDAC3 phosphorylation and its nuclear translocation were increased in response to 6-hydroxydopamine (6-OHDA) treatment. LRRK2 also inhibited myocyte-specific enhancer factor 2D activity, which is required for neuronal survival. LRRK2 ultimately promoted 6-OHDA-induced cell death via positive modulation of HDAC3. These findings suggest that LRRK2 affects epigenetic histone modification and neuronal survival by facilitating HDAC3 activity and regulating its localization.


Assuntos
Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neuritos/patologia , Neuroblastoma/patologia , Acetilação , Animais , Encéfalo/metabolismo , Sobrevivência Celular , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Histona Desacetilases/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neuritos/metabolismo , Neuroblastoma/metabolismo , Fosforilação , Ratos
9.
J Cell Physiol ; 232(8): 2083-2093, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27648923

RESUMO

Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase, an RNA-dependent DNA polymerase that elongates telomeric DNA. hTERT displays several extra-telomeric functions that are independent of its telomere-regulatory function, including tumor progression, and neuronal cell death regulation. In this study, we evaluated these additional hTERT non-telomeric functions. We determined that hTERT interacts with several 19S and 20S proteasome subunits. The 19S regulatory particle and 20S core particle are part of 26S proteasome complex, which plays a central role in ubiquitin-dependent proteolysis. In addition, hTERT positively regulated 26S proteasome activity independent of its enzymatic activity. Moreover, hTERT enhanced subunit interactions, which may underlie hTERT's ability of hTERT to stimulate the 26S proteasome. Furthermore, hTERT displayed cytoprotective effect against ER stress via the activation of 26S proteasome in acute myeloid leukemia cells. Our data suggest that hTERT acts as a novel chaperone to promote 26S proteasome assembly and maintenance. J. Cell. Physiol. 232: 2083-2093, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Telomerase/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/enzimologia , Células HeLa , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos Knockout , Chaperonas Moleculares/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Proteólise , RNA/genética , RNA/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA , Telomerase/genética , Fatores de Tempo , Transfecção , Tunicamicina/farmacologia , Ubiquitinação
10.
J Cell Physiol ; 232(12): 3664-3676, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28160502

RESUMO

The proto-oncogene c-Myc has a pivotal function in growth control, differentiation, and apoptosis and is frequently affected in human cancer, including breast cancer. Ubiquitin-specific protease 22 (USP22), a member of the USP family of deubiquitinating enzymes (DUBs), mediates deubiquitination of target proteins, including histone H2B and H2A, telomeric repeat binding factor 1, and cyclin B1. USP22 is also a component of the mammalian SAGA transcriptional co-activating complex. In this study, we explored the functional role of USP22 in modulating c-Myc stability and its physiological relevance in breast cancer progression. We found that USP22 promotes deubiquitination of c-Myc in several breast cancer cell lines, resulting in increased levels of c-Myc. Consistent with this, USP22 knockdown reduces c-Myc levels. Furthermore, overexpression of USP22 stimulates breast cancer cell growth and colony formation, and increases c-Myc tumorigenic activity. In conclusion, the present study reveals that USP22 in breast cancer cell lines increases c-Myc stability through c-Myc deubiquitination, which is closely correlated with breast cancer progression.


Assuntos
Neoplasias da Mama/enzimologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tioléster Hidrolases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Meia-Vida , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Células MCF-7 , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteólise , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Tioléster Hidrolases/genética , Fatores de Tempo , Transfecção , Ubiquitina Tiolesterase , Ubiquitinação
11.
Cell Mol Life Sci ; 72(1): 181-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24947323

RESUMO

Parkinson's disease (PD) is characterized by progressive midbrain dopaminergic neuron degeneration and the formation of intracellular protein aggregates, referred to as Lewy bodies. F-box only protein 7 (FBXO7) gene mutations are closely associated with progression of the autosomal recessive form of familial PD. FBXO7 encodes a component of Skp1, cullin, F-box ubiquitin ligase complexes; however, its cellular targets, including substrates and regulators, are not yet clarified. To identify potential substrates of FBXO7, we performed a yeast two-hybrid screen of a human fetal brain library and identified neurotrophin receptor-interacting MAGE protein (NRAGE) as a novel FBXO7-binding partner. We found that FBXO7 interacts with NRAGE and mediates Lys-63-linked poly-ubiquitination of NRAGE in mammalian cells. FBXO7 overexpression accelerates formation of NRAGE-TAK1-TAB1 complexes, whereas FBXO7 knockdown correspondingly decreases complex formation. In addition, BMP4 stimulation enhances NRAGE ubiquitination through FBXO7 and facilitates endogenous NRAGE-TAK1-TAB1 complex formation. Furthermore, FBXO7 positively regulates formation of the BMP receptor-NRAGE-TAK1-TAB1 complex, and up-regulates NF-κB activity. Taken together, our results suggest that FBXO7 affects BMP4-mediated signaling through proteasome-independent ubiquitination of NRAGE and augments formation of downstream signaling components.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica , Lisina/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos de Neoplasias/genética , Apoptose , Western Blotting , Proteína Morfogenética Óssea 4/genética , Proliferação de Células , Células Cultivadas , Citoplasma/metabolismo , Células-Tronco de Carcinoma Embrionário/metabolismo , Proteínas F-Box/genética , Células HEK293 , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Lisina/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
12.
J Cell Physiol ; 230(7): 1651-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25546086

RESUMO

Protein ubiquitination can be reversed by de-ubiquitinating enzymes (DUBs), which are classified into two main classes, cysteine proteases and metalloproteases. Cysteine proteases include ubiquitin-specific proteases (USPs) and ubiquitin C-terminal hydrolases. USP22 is a USP family member and a component of the mammalian Spt-Ada-Gcn5 acetyltransferase transcriptional coactivating complex. Regulator of calcineurin 1 (RCAN1; also known as DSCR1 or MCIP1) functions as an endogenous inhibitor of calcineurin signaling. In the present study, we have identified a novel interaction between USP22 and RCAN1 (RCAN1-1S) in the mammalian cells. In addition, the overexpression of USP22 caused the increase of RCAN1 protein stability. USP22 antagonized the actions of FBW7, NEDD4-2, and ß-TrCP E3 ligase on RCAN1 and promoted RCAN1 de-ubiquitination. Moreover, we found that RCAN1 was bound to USP22 in basal conditions, and interferon-α (IFN-α) treatment caused the dissociation of RCAN1 from USP22, which subsequently triggered RCAN1 ubiquitination and proteasome degradation. Taken together, these results suggest that USP22 positively regulates RCAN1 levels, which would consequently affect diverse RCAN1-linked cellular processes, such as the inflammatory process involving the release of IFN-α.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Tioléster Hidrolases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Regulação da Expressão Gênica/fisiologia , Humanos , Interferon-alfa/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Tioléster Hidrolases/genética , Ubiquitina Tiolesterase , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
J Neurochem ; 134(4): 756-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25963095

RESUMO

Mutations of parkin are associated with the occurrence of autosomal recessive familial Parkinson's disease (PD). Parkin acts an E3 ubiquitin ligase, which ubiquitinates target proteins and subsequently regulates either their steady-state levels through the ubiquitin-proteasome system or biochemical properties. In this study, we identify a novel regulatory mechanism of parkin by searching for new regulatory factors. After screening human fetal brain using a yeast two hybrid assay, we found dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) as a novel binding partner of parkin. We also observed that parkin interacts and co-localizes with Dyrk1A in mammalian cells. In addition, Dyrk1A directly phosphorylated parkin at Ser-131, causing the inhibition of its E3 ubiquitin ligase activity. Moreover, Dyrk1A-mediated phosphorylation reduced the binding affinity of parkin to its ubiquitin-conjugating E2 enzyme and substrate, which could be the underlying inhibitory mechanism of parkin activity. Furthermore, Dyrk1A-mediated phosphorylation inhibited the neuroprotective action of parkin against 6-hydroxydopamine toxicity in dopaminergic SH-SY5Y cells. These findings suggest that Dyrk1A acts as a novel functional modulator of parkin. Parkin phosphorylation by Dyrk1A suppresses its E3 ubiquitin ligase activity potentially contributing to the pathogenesis of PD under PD-inducing pathological conditions. Mutations of parkin are linked to autosomal recessive forms of familial Parkinson's disease (PD). According to its functional relevance in abnormal protein aggregation and neuronal cell death, a number of post-translational modifications regulate the ubiquitin E3 ligase activity of parkin. Here we propose a novel inhibitory mechanism of parkin E3 ubiquitin ligase through dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A)-mediated phosphorylation as well as its neuroprotective action against 6-hydroxydopamine (6-OHDA)-induced cell death. The present work suggests that parkin phosphorylation by Dyrk1A may affect the pathogenesis of PD under PD-inducing pathological conditions.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Serina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Fosforilação/fisiologia , Quinases Dyrk
14.
J Neurosci Res ; 93(5): 722-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25557247

RESUMO

Parkinson's disease (PD) is characterized by progressive dopaminergic neuronal loss and the formation of abnormal protein aggregates, referred to as Lewy bodies (LBs). PINK1 is a serine/threonine protein kinase that protects cells from stress-induced mitochondrial dysfunction. PINK1 gene mutations cause one form of autosomal recessive early-onset PD. Transglutaminase 2 (TG2) is an intracellular protein cross-linking enzyme that has an important role in LB formation during PD pathogenesis. This study identifies PINK1 as a novel TG2 binding partner and shows that PINK1 stabilizes the half-life of TG2 via inhibition of TG2 ubiquitination and subsequent proteasomal degradation. PINK1 affects TG2 stability in a kinase-dependent manner. In addition, PINK1 directly phosphorylates TG2 in carbonyl cyanide m-chlorophenyl hydrazine-induced mitochondrial damaged states, thereby enhancing TG2 accumulation and intracellular protein cross-linking products. This study further confirms the functional link between upstream PINK1 and downstream TG2 in Drosophila melanogaster. These data suggest that PINK1 positively regulates TG2 activity, which may be closely associated with aggresome formation in neuronal cells.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Transglutaminases/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Linhagem Celular , Drosophila melanogaster , Ativação Enzimática/efeitos dos fármacos , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Humanos , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Organelas/metabolismo , Mutação Puntual/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Quinases/genética , Estrutura Terciária de Proteína/fisiologia , Ionóforos de Próton/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , Transfecção , Transglutaminases/química , Transglutaminases/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
15.
J Biol Chem ; 288(13): 9102-11, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23404503

RESUMO

Small ubiquitin-like modifier (SUMO), a member of the ubiquitin-related protein family, is covalently conjugated to lysine residues of its substrates in a process referred to as SUMOylation. SUMOylation occurs through a series of enzymatic reactions analogous to that of the ubiquitination pathway, resulting in modification of the biochemical and functional properties of substrates. To date, four mammalian SUMO isoforms, a single heterodimeric SUMO-activating E1 enzyme SAE1/SAE2, a single SUMO-conjugating E2 enzyme ubiquitin-conjugating enzyme E2I (UBC9), and a few subgroups of SUMO E3 ligases have been identified. Several SUMO E3 ligases such as topoisomerase I binding, arginine/serine-rich (TOPORS), TNF receptor-associated factor 7 (TRAF7), and tripartite motif containing 27 (TRIM27) have dual functions as ubiquitin E3 ligases. Here, we demonstrate that the ubiquitin E3 ligase UHRF2 also acts as a SUMO E3 ligase. UHRF2 effectively enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. In addition, the SUMO E3 activity of UHRF2 on ZNF131 depends on the presence of SET and RING finger-associated and nuclear localization signal-containing region domains, whereas the critical ubiquitin E3 activity RING domain is dispensable. Our findings suggest that UHRF2 has independent functional domains and regulatory mechanisms for these two distinct enzymatic activities.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , DNA/metabolismo , Dimerização , Células HEK293 , Humanos , Leupeptinas/farmacologia , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Interferência de RNA , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
J Cell Sci ; 125(Pt 1): 67-80, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22250195

RESUMO

Neural Wiskott-Aldrich syndrome protein (N-WASP) is involved in tight regulation of actin polymerization and dynamics. N-WASP activity is regulated by intramolecular interaction, binding to small GTPases and tyrosine phosphorylation. Here, we report on a novel regulatory mechanism; we demonstrate that N-WASP interacts with dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A). In vitro kinase assays indicate that Dyrk1A directly phosphorylates the GTPase-binding domain (GBD) of N-WASP at three sites (Thr196, Thr202 and Thr259). Phosphorylation of the GBD by Dyrk1A promotes the intramolecular interaction of the GBD and verprolin, cofilin and acidic (VCA) domains of N-WASP, and subsequently inhibits Arp2/3-complex-mediated actin polymerization. Overexpression of either Dyrk1A or a phospho-mimetic N-WASP mutant inhibits filopodia formation in COS-7 cells. By contrast, the knockdown of Dyrk1A expression or overexpression of a phospho-deficient N-WASP mutant promotes filopodia formation. Furthermore, the overexpression of a phospho-mimetic N-WASP mutant significantly inhibits dendritic spine formation in primary hippocampal neurons. These findings suggest that Dyrk1A negatively regulates actin filament assembly by phosphorylating N-WASP, which ultimately promotes the intramolecular interaction of its GBD and VCA domains. These results provide insight on the mechanisms contributing to diverse actin-based cellular processes such as cell migration, endocytosis and neuronal differentiation.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/química , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/química , Animais , Células COS , Chlorocebus aethiops , Dendritos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Pseudópodes/metabolismo , Ratos , Proteína da Síndrome de Wiskott-Aldrich/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Dyrk
17.
PLoS One ; 19(1): e0297970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265984

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0290371.].

18.
J Biol Chem ; 287(21): 17517-17529, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22467880

RESUMO

Like ubiquitin, small ubiquitin-like modifier (SUMO) covalently attaches to specific target proteins and modulates their functional properties, including subcellular localization, protein dimerization, DNA binding, and transactivation of transcription factors. Diverse transcriptional co-regulator complexes regulate the ability of estrogen receptors to respond to positive and negative acting hormones. Zinc finger protein 131 (ZNF131) is poorly characterized but may act as a repressor of estrogen receptor α (ERα)-mediated trans-activation. Here, we identify ZNF131 as a target for SUMO modification and as a substrate for the SUMO E3 ligase human polycomb protein 2 (hPc2). We report that the SUMO-interacting motif 1 (SIM1) and the C-box of hPc2 are critical regions required for ZNF131 SUMOylation and define the ZNF131 SUMOylation site as lysine 567. We further show that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling and consequently attenuates estrogen-induced cell growth in a breast cancer cell line. Our findings suggest that SUMOylation is a novel regulator of ZNF131 action in estrogen signaling and breast cancer cell proliferation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteína SUMO-1/metabolismo , Transdução de Sinais/fisiologia , Sumoilação/fisiologia , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células COS , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Receptor alfa de Estrogênio/genética , Feminino , Células HEK293 , Humanos , Ligases , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína SUMO-1/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Biochem Biophys Res Commun ; 430(1): 400-5, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23159625

RESUMO

Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ERα and ERß. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of a DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ERα and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ERα inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ERα, which consequently inhibits ERα-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ERα-co-repressor.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio/antagonistas & inibidores , Células HEK293 , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
20.
Cell Mol Life Sci ; 69(19): 3301-15, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22643835

RESUMO

Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of neuronal death in PD is largely unknown, but several genetic loci, including PTEN-induced putative kinase 1 (PINK1), have been linked to early onset autosomal recessive forms of familial PD. PINK1 encodes a serine/threonine kinase, which phosphorylates several substrates and consequently leads to cell protection against apoptosis induced by various stresses. In addition, research has shown that inflammation largely contributes to the pathogenesis of PD, but the functional link between PINK1 and PD-linked neuroinflammation remains poorly understood. Therefore, in the present study, we investigated the functional role of PINK1 in interleukin (IL)-1ß-mediated inflammatory signaling. We show that PINK1 specifically binds to TRAF6 and TAK1, and facilitates the autodimerization and autoubiquitination of TRAF6. PINK1 also enhances the association between TRAF6 and TAK1, phosphorylates TAK1, and stimulates polyubiquitination of TAK1. Furthermore, PINK1 leads to the potentiation of IL-1ß-mediated NF-κB activity and cytokine production. These findings suggest that PINK1 positively regulates two key molecules, TRAF6 and TAK1, in the IL-1ß-mediated signaling pathway, consequently up-regulating their downstream inflammatory events.


Assuntos
Inflamação/metabolismo , Interleucina-1beta/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Células Cultivadas/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Interleucina-8/metabolismo , MAP Quinase Quinase Quinases/genética , Camundongos , NF-kappa B/metabolismo , Fosforilação , Proteínas Quinases/genética , Multimerização Proteica , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa