Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Chemistry ; : e202401733, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934891

RESUMO

In several biological processes, H2S is known to function as an endogenous gaseous agent. It is very necessary to monitor H2S and relevant physiological processes in vivo. Herein, a new type of fluorophore with a reliable leaving group allows for excited-state intramolecular transfer characteristics (ESIPT), inspired by mycophenolic acid. A morpholine ring was connected at the maleimide position to target the lysosome. Subsequently, the dinitrophenyl group known for a photoinduced electron transfer (PET) effect, was connected to allow for an effective "turn-on" probe Lyso-H2S. Lyso-H2S demonstrated strong selectivity towards H2S, large Stokes shift (111 nm), and an incredibly low detection limit (41.8 nM). The imaging of endogenous and exogenous H2S in living cells (A549 cell line) was successfully achieved because of the specificity and ultra-low toxicity (100 % cell viability at 50 µM concentration of Lyso-H2S.) Additionally, Lyso-H2S was also employed to visualize the activity of H2S in the gallbladder and intestine in a living zebrafish model. This is the first report of a fluorescent probe to track H2S sensing in specific organ systems to our knowledge.

2.
Chem Soc Rev ; 52(2): 573-600, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36537842

RESUMO

Corroles are synthetic porphyrin analogs that contain one meso carbon atom lesser and bear a trianionic N4 metal-chelating core. They require in-depth preparative chemistry, demonstrate unique coordination chemistry and have impressive and diverse physical properties, and these are commonly compared to their respective porphyrins. The corrole's macrocyclic system is inherently electron rich and chelates metal ions in a more compact, less symmetric tetranitrogen cavity compared to that of porphyrins. Herein, we cover the highlights of the corrole research through the decades by first reviewing, in a chronological sense, multi-step syntheses; some routes have since been discontinued. This is followed by describing post-functionalization of already formed corroles via reactions performed on either the macrocycle's periphery or the inner nitrogen atoms or on the existing substituents. We do also mention milestones in literature reviewing, publication of encyclopedias, and the creation of professional organizations and conferences (ICPP) which make up the corrole/porphyrin research landscape. Also highlighted are still existing challenges and future perspectives.

3.
Analyst ; 148(11): 2609-2615, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37190984

RESUMO

The discovery and implementation of media that derive from bioinspired designs and bear optical readouts featuring large Stokes shifts are of continued interest to a wide variety of researchers and clinicians. Myco-F, a novel mycophenolic acid precursor-based probe features a cleavable tert-butyldimethylsiloxy group to allow for fluoride detection. Myco-F exhibits high selectivity and specificity towards F- (Stokes shift = 120 nm). All measurements were performed in complete aqueous media (LOD=0.38 µM). Myco-F enables detection of fluoride ions in living HEK293 cells and localizes in the eye region (among other regions) of the zebrafish. DFT calculations support the proposed ESIPT working photomechanism.


Assuntos
Fluoretos , Peixe-Zebra , Animais , Humanos , Ácido Micofenólico , Células HEK293 , Corantes Fluorescentes
4.
Analyst ; 148(20): 5203-5209, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37721488

RESUMO

Excessive production of potent biological oxidants such as HOCl has been implicated in numerous diseases. Thus, it is crucial to develop highly specific and precise methods to detect HOCl in living systems, preferably with molecules that can show a distinct therapeutic effect. Our study introduces the synthesis and application of a highly sensitive fluorescence "turn-on" probe, Myco-OCl, based on the mycophenolic acid scaffold with exceptional water solubility. The ESIPT-driven mechanism enables Myco-OCl to specifically and rapidly detect (<5 s) HOCl with an impressive Stokes shift of 105 nm (λex = 417 nm, λem = 522 nm) and a sub-nanomolar (97.3 nM) detection limit with the detection range of 0 to 50 µM. The potential of Myco-OCl as an excellent biosensor is evident from its successful application for live cell imaging of exogenous and endogenous HOCl. In addition, Myco-OCl enabled us to detect HOCl in a zebrafish inflammatory animal model. These underscore the great potential of Myco-OCl for detecting HOCl in diverse physiological systems. Our findings thus offer a highly promising tool for detecting HOCl in living organisms.

5.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446894

RESUMO

Selenium is a main group element and an essential trace element in human health. It was discovered in selenocysteine (SeC) by Stadtman in 1974. SeC is an encoded natural amino acid hailed as the 21st naturally occurring amino acid (U) present in several enzymes and which exquisitely participates in redox biology. As it turns out, selenium bears a U-shaped toxicity curve wherein too little of the nutrient present in biology leads to disorders; concentrations that are too great, on the other hand, pose toxicity to biological systems. In light of many excellent previous reviews and the corpus of literature, we wanted to offer this current review, in which we present aspects of the clinical and biological literature and justify why we should further investigate Se-containing species in biological and medicinal contexts, especially small molecule-containing species in biomedical research and clinical medicine. Of central interest is how selenium participates in biological signaling pathways. Several clinical medical cases are recounted; these reports are mainly pertinent to human cancer and changes in pathology and cases in which the patients are often terminal. Selenium was an option chosen in light of earlier chemotherapeutic treatment courses which lost their effectiveness. We describe apoptosis, and also ferroptosis, and senescence clearly in the context of selenium. Other contemporary issues in research also compelled us to form this review: issues with CoV-2 SARS infection which abound in the literature, and we described findings with human patients in this context. Laboratory scientific studies and clinical studies dealing with two main divisions of selenium, organic (e.g., methyl selenol) or inorganic selenium (e.g., sodium selenite), are discussed. The future seems bright with the research and clinical possibilities of selenium as a trace element, whose recent experimental clinical treatments have so far involved dosing simply and inexpensively over a set of days, amounts, and time intervals.


Assuntos
COVID-19 , Selênio , Oligoelementos , Humanos , Selênio/farmacologia , Selênio/metabolismo , Oxirredução , Selenocisteína/metabolismo , Estresse Oxidativo , Apoptose , Transdução de Sinais
6.
Analyst ; 146(7): 2212-2220, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595018

RESUMO

Evident from numerous studies, cysteine plays a crucial role in cellular function. Reactions with analyte also enables for molecular recognition to adhere to molecular therapeutic potential; integration between synthetic probes therefore allows for a potentially deep therapy-related interogation of biological systems (theranostics). The development of molecular cysteine probes with extremely accurate detection is still a key challenge for the field. The development of water-soluble organic molecular fluorescent probes able to efficiently distinguish common biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) by chemical recognition means i.e. by (binding, cleavage) in biological systems is a greatly sought research challenge due to the similarity of the small sulfhydryl-containing species. Herein, we have developed a water-soluble and highly cell viable fluorescent organic molecule (log P = 0.82) for the selective detection of cysteine. The probe (Myco-Cys) shows a "turn-on" response with the cleavage ester linkage of the methacrylate as cysteine is encountered in solution. The probe shows strong fluorescence enhancement (16.5-fold) when treated with Cys (1 equiv., 10 µM) compared to closely related species such as amino acids, including HCy/GSH, and the limit of detection was determined as 45.0 nM. DFT calculations helped confirm the photomechanism of Myco-Cys. Furthermore, the sensing ability of the probe was demonstrated by living cell assays through the use of confocal fluorescence microscopy. Myco-Cys could selectively detect cysteine among biothiols. Myco-Cys was able to monitor the cysteine level, apart from the oxidative stress present in the form of H2O2 in A549 cells.


Assuntos
Cisteína , Ácido Micofenólico , Corantes Fluorescentes , Glutationa , Células HeLa , Homocisteína , Humanos , Peróxido de Hidrogênio , Metacrilatos , Metilmetacrilato , Imagem Óptica , Espectrometria de Fluorescência , Água
7.
Inorg Chem ; 60(12): 8442-8446, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110813

RESUMO

A set of gold corrole complexes containing four different ß-substituent groups (Br/I/CF3), namely, 4Br-Au, 4I-Au, and 4CF3-Au, were investigated; all showed room temperature phosphorescence. The phosphorescence quantum yields of the corroles were determined using tetraphenylporphyrin as a reference: Φph (4I-Au, 0.75%) > Φph (4Br-Au, 0.64%) > Φph (4CF3-Au, 0.38%). 4CF3-Au exhibited near-IR emission (858 nm, aerobic); absorbance intensity for the Q-band was higher than that for the Soret band. Complex 4I-Au showed a longer phosphorescence lifetime (82 µs) compared to those of 4Br-Au (53 µs) and 4CF3-Au (28 µs; N2, tol). Thermally activated delayed fluorescence (TADF) emission of 4I/Br-Au complexes was observed: stronger emission intensity correlated with increasing temperature. Good negative correlations for 4I/Br-Au were observed between the Soret band absorption energy and the solvent polarizability: excited states of 4I/Br-Au are more polar than their ground states. TD-DFT calculations revealed very fast intersystem crossing (ISC) rate constants, 2.20 × 1012 s-1 (4CF3-Au) > 1.96 × 1011 s-1 (4Br-Au) > 1.15 × 1011 s-1 (4I-Au), and importantly, the reverse intersystem crossing (rISC) rate constants are determined as 1.68 × 107 s-1 (4I-Au) > 2.40 × 103 s-1 (4Br-Au) ≫ 8.09 × 10-8 s-1 (4CF3-Au). The exceptionally low rISC rate constant of 4CF3-Au is attributed to its more steric and deformed structure bearing a larger energy gap between the S1 and T1 states.

8.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525729

RESUMO

In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.


Assuntos
Corantes Fluorescentes/química , Selênio/química , Animais , Fluorescência , Glutationa/química , Humanos , Nanopartículas/química , Pontos Quânticos/química , Telúrio/química
9.
Photochem Photobiol Sci ; 19(8): 996-1000, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32662800

RESUMO

Toluene, p-xylene and mesitylene were cleanly converted to their corresponding monoaldehydes via mild photooxygenation utilizing transition metal and main group ß-CF3-substituted corroles. Aldehyde yield increased as more electron-donating CH3 groups are present on the substrate. 4-P was most efficient (TON ∼ 1072, mesitylene) via the singlet oxygen vis the superoxide mechanism.

10.
Inorg Chem ; 58(9): 6184-6198, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31002247

RESUMO

An eight-member series of CF3-substituted difluorophosphorus corroles was prepared for establishing a structure-activity profile of these high-potential photosensitizers. It consisted of preparing all four possible isomers of the monosubstituted corrole and complexes with 2-, 3-, 4-, and 5-CF3 groups on the macrocycle's periphery. The synthetic pathway to these CF3-substituted derivatives, beginning with (tpfc)PF2, involves two different initial routes: (i) direct electrophilic CF3 incorporation using FSO2CF2CO2Me and copper iodide, or (ii) bromination to achieve the 2,3,8,17,18-pentabrominated compound using excess bromine in methanol. Crystallographic investigations revealed that distortion of the original planar macrocycle is evident even in the monosubstituted case and that it becomes truly severe for the penta-CF3-substituted derivative 5. There is a shift in redox potentials of about 193 mV per -CF3 group, which decreases to only 120 mV for the fifth one in 5. Differences in the electronic spectra suggest that the Gouterman four orbital model decreases in relevance upon gradual -CF3 substitution, a conclusion that was corroborated by DFT calculations. The very significant energy lowering of the frontier orbitals suggested that photoexcitation should lead to a highly oxidizing photocatalyst. This hypothesis was proven true by finding that the most synthetically accessible CF3-substituted derivative is an excellent catalyst for the photoinduced conversion of bromide to bromine (phenol, toluene, and benzene assay).

11.
Anal Chem ; 90(4): 2648-2654, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29359562

RESUMO

The development of novel fluorescent probes for monitoring the concentration of various biomolecules in living systems has great potential for eventual early diagnosis and disease intervention. Selective detection of competitive species in biological systems is a great challenge for the design and development of fluorescent probes. To improve on the design of fluorescent coumarin-based biothiol sensing technologies, we have developed herein an enhanced dual emission doubly activated system (DACP-1 and the closely related DACP-2) for the selective detection of glutathione (GSH) through the use of one optical channel and the detection of cysteine (Cys) by another channel. A phenylselenium group present at the 4-position completely quenches the fluorescence of the probe via photoinduced electron transfer to give a nonfluorescent species. Probes are selective for glutathione (GSH) in the red region and for cysteine/homocysteine (Cys/Hcy) in the green region. When they were treated with GSH, DACP-1 and DACP-2 showed strong fluorescence enhancement in comparison to that for closely related species such as amino acids, including Cys/Hcy. Fluorescence quantum yields (ΦF) increased for the red channel (<0.001 to 0.52 (DACP-1) and 0.48 (DACP-2)) and green channel (Cys) (<0.001 to 0.030 (DACP-1) and 0.026 (DACP-2)), respectively. Competing fluorescent enhancements upon addition of closely related species were negligible. Fast responses, improved water solubility, and good cell membrane permeability were all properly established with the use of DACP-1 and DACP-2. Live human lung cancer cells and fibroblasts imaged by confocal microscopy, as well as live mice tumor model imaging, confirmed selective detection.


Assuntos
Cisteína/análise , Fibroblastos/química , Corantes Fluorescentes/química , Glutationa/análise , Neoplasias Pulmonares/química , Imagem Óptica , Animais , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacologia , Humanos , Injeções Intravenosas , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Estrutura Molecular , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico por imagem , Células Tumorais Cultivadas
12.
Chemistry ; 24(21): 5623-5629, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29405457

RESUMO

Cysteine plays a crucial role in cellular functions and in human pathologies. However, the development of cysteine probes with extremely accurate detection is still a key challenge for the field. Herein, we have fully characterized and developed a novel selective fluorescent probe: red emission, aqueous detection and large Stokes' shift for cysteine (Reals-C). Key in the probe synthesis is a Michael addition onto an acroylate group and subsequent intramolecular cyclization. The probe exhibits analyte detection via an intricate role set up by the leaving groups so to discriminate and form the red-emissive analyte sensing platform (λex =471 nm, λem =637 nm) through a chemical cascade pathway. Furthermore, the sensing ability of the probe was demonstrated by both in vitro and in vivo assays. This probe enables for successfully endogenous cysteine sensing in HaCaT human keratinocytes through comparison with a commercial thiol-sensitive probe; Reals-C shows excellent in vivo cysteine detection in a drug-induced animal liver injury model.


Assuntos
Cisteína/análise , Corantes Fluorescentes/química , Animais , Doença Hepática Induzida por Substâncias e Drogas , Ciclização , Cisteína/química , Cisteína/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/síntese química , Humanos , Queratinócitos/efeitos dos fármacos , Espectrometria de Fluorescência/métodos , Compostos de Sulfidrila/química
13.
Chemistry ; 23(32): 7785-7790, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28332756

RESUMO

A new 1,8-naphthalimide-based fluorescent probe for the detection of diethyl cyanophosphonate, a very common nerve agent simulant, is designed, synthesized, and characterized fully. The probe shows around 50-fold enhancement of fluorescence intensity over other nerve agent simulants. Importantly, the probe is able to work under aqueous conditions in a wide pH range. Two reactive groups, the oxime and the phenol, allow a dual emission with different kinetic reactions. The reaction of diethyl cyanophosphonate with the oxime group occurs in advance; the resulting time response of the fluorescence enhancement is observed within approximately 30 s. After the oxime reaction, then phenol also undergoes a substitution reaction with diethyl cyanophosphonate, resulting in a blue emission. The real application of this new probe is demonstrated through the use of silica plate assays for the detection of diethyl cyanophosphonate in both gas and liquid phases through dual emission channels.


Assuntos
Corantes Fluorescentes/química , Agentes Neurotóxicos/química , Água/química , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Naftalimidas/síntese química , Naftalimidas/química , Organofosfonatos/química , Dióxido de Silício/química , Espectrometria de Fluorescência
14.
Chemistry ; 22(28): 9642-8, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27243475

RESUMO

Two closely related phenyl selenyl based boron-dipyrromethene (BODIPY) turn-on fluorescent probes for the detection of hypochlorous acid (HOCl) were synthesized for studies in chemical biology; emission intensity is modulated by a photoinduced electron-transfer (PET) process. Probe 2 intrinsically shows a negligible background signal; however, after reaction with HOCl, chemical oxidation of selenium forecloses the PET process, which evokes a significant increase in fluorescence intensity. The fluorescence intensity of probes 1 and 2 with HOCl involves an ∼18 and ∼50-fold enhancement compared with the respective responses from other reactive oxygen/nitrogen species (ROS/RNS) and low detection limits (30.9 nm for 1 and 4.5 nm for 2). Both probes show a very fast response with HOCl; emission intensity reached a maximum within 1 s. These probes show high selectivity for HOCl, as confirmed by confocal microscopy imaging when testing with RAW264.7 and MCF-7 cells.


Assuntos
Corantes Fluorescentes/química , Ácido Hipocloroso/química , Microscopia Confocal/métodos , Porfobilinogênio/análogos & derivados , Selênio/química , Boro , Linhagem Celular , Fluorescência , Humanos , Limite de Detecção , Células MCF-7 , Oxirredução , Porfobilinogênio/química
15.
Acc Chem Res ; 47(10): 2985-98, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25248146

RESUMO

As scientists in recent decades have discovered, selenium is an important trace element in life. The element is now known to play an important role in biology as an enzymatic antioxidant. In this case, it sits at the active site and converts biological hydrogen peroxides to water. Mimicking this reaction, chemists have synthesized several organoselenium compounds that undergo redox transformations. As such, these types of compounds are important in the future of both medicinal and materials chemistry. One main challenge for organochalcogen chemists has been to synthesize molecular probes that are soluble in water where a selenium or tellurium center can best modify electronics of the molecule based on a chemical oxidation or reduction event. In this Account, we discuss chemists' recent efforts to create chalcogen-based chemosensors through synthetic means and current photophysical understanding. Our work has focused on small chromophoric or fluorophoric molecules, in which we incorporate discrete organochalcogen atoms (e.g., R-Se-R, R-Te-R) in predesigned sites. These synthetic molecules, involving rational synthetic pathways, allow us to chemoselectively oxidize compounds and to study the level of analyte selectivity by way of their optical responses. All the reports we discussed here deal with well-defined and small synthetic molecular systems. With a large number of reports published over the last few years, many have notably originated from the laboratory of K. Han (P. R. China). This growing body of research has given chemists new ideas for the previously untenable reversible reactive oxygen species detection. While reversibility of the probe is technically important from the stand-point of the chalcogen center, facile regenerability of the probe using a secondary analyte to recover the initial probe is a very promising avenue. This is because (bio)chalcogen chemistry is extremely rich and bioinspired and continues to yield important developments across many scientific fields. Organochalcogen (R-E-R) chemistry in such chemical recognition and supramolecular pursuits is a fundamental tool to allow chemists to explore stable organic-based probe modalities of interest to develop better spectroscopic tools for (neuro)biological applications. Chalcogen donor sites also provide sites where metals can coordinate, and facile oxidation may extend to the sulfone analogues (R-EO2-R) or beyond. Consequently, chemists can then make use of reliable reversible chemical probing platforms based on the chemical redox properties valence state switching principally from 2 to 4 (and back to 2) of selenium and tellurium atoms. The main organic molecular skeletons have involved chemical frames including boron-dipyrromethene (BODIPY) systems, extended cyanine groups, naphthalimide, rhodamine, and fluorescein cores, and isoselenazolone, pyrene, coumarin, benzoselenadiazole, and selenoguanine systems. Our group has tested many such molecular probe systems in cellular milieu and under a series of conditions and competitive environments. We have found that the most important analytes have been reactive oxygen species (ROS) such as superoxide and hypochlorite. Reactive nitrogen species (RNS) such as peroxynitrite are also potential targets. In addition, we have also considered Fenton chemistry systems. Our research and that of others shows that the action of ROS is often reversible with H2S or biothiols such as glutathione (GSH). We have also found that a second class of analytes are the thiols (RSH), in particular, biothiols. Here, the target group might involve an R-Se-Se-R group. The study of analytes also extends to metal ions, for example, Hg(2+), and anions such as fluoride (F(-)), and we have developed NIR-based systems as well. These work through various photomechanisms, including photoinduced electron transfer (PET), twisted internal charge transfer (TICT), and internal charge transfer (ICT). The growing understanding of this class of probe suggests that there is much room for creative thinking regarding modular designs or unexpected organic chemical synthesis designs, interplay between analytes, new analyte selectivity, biological targeting, and chemical switching, which can also serve to further the neurological probing and molecular logic gating frontiers.


Assuntos
Corantes Fluorescentes/química , Espécies Reativas de Nitrogênio/análise , Espécies Reativas de Oxigênio/análise , Selênio/química , Compostos de Sulfidrila/análise , Telúrio/química , Estrutura Molecular , Compostos Organometálicos/química
16.
Biochem Biophys Res Commun ; 443(3): 1085-91, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24380864

RESUMO

Herein, a new method for preparing phosphorylated proteins at specific sites has been applied to α-synuclein (α-Syn). Three different α-Syn species phosphorylated at Serine 87 (S87p-α-Syn), Serine 129 (S129p-α-Syn) and Serine 87/129 (S87p,129p-α-Syn) were prepared through the 'stop codon' method and verified by LC/MS/MS and immunoblotting. Each type of phosphorylated α-Syn was tested for oligomerization trends and cellular toxicity with dopamine (DA), Cu(2+) ions and pyridoxal 5'-phosphate. Aggregation trends induced by DA or DA/Cu(2+) were similar between phosphorylated and non-phosphorylated α-Syn in SDS-PAGE. However, except for the monomer, phosphorylated oligomers showed higher toxicity than the non-phosphorylated α-Syn (Np-α-Syn) oligomers via WST-1 assays when tested on SH-SY5Y human neuroblastoma cells. In particular, S87p-α-Syn and S87p,129p-α-Syn oligomers induced by DA/Cu(2+), showed higher toxicity than did S129p-α-Syn. When α-Syn was treated with pyridoxal 5'-phosphate in the presence of DA or Cu(2+) to determine aggregation effects, high inhibition effects were shown in both non-phosphorylated and phosphorylated versions. α-Syn co-incubated with DA or DA/Cu(2+) showed less cellular toxicity upon pyridoxal 5'-phosphate treatment, especially in the case of DA-induced Np-α-syn. This study supports that phosphorylated oligomers of α-Syn at residue 87 can contribute to neuronal toxicity and the pyridoxal 5'-phosphate can be used as an inhibitor for α-Syn aggregation.


Assuntos
Códon de Terminação/genética , Neurônios/patologia , Fosfosserina/metabolismo , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Linhagem Celular , Cobre/farmacologia , Dopamina/farmacologia , Eletroforese em Gel de Poliacrilamida , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Fosfato de Piridoxal/farmacologia
17.
J Neurosci Res ; 92(3): 359-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24288134

RESUMO

α-Synuclein oligomers can induce neurotoxicity and are implicated in Parkinson's disease etiology and disease progression. Many studies have reported α-synuclein oligomerization by dopamine (DA) and transition metal ions, but few studies provide insight into joint influences of DA and Cu2+ . In this study, DA and Cu2+ were coadministered aerobically to measure α-synuclein oligomerization under these conditions. In the presence of oxygen, DA induced α-synuclein oligomerization in a dose-dependent manner. Cu+/2+ did not effect oligomerization in such a manner in the presence of DA. By electrophoresis, Cu2+ was found easily to induce oligomerization with DA. This implies that oligomerization invoked by DA is reversible in the presence of Cu2+, which appears to be mediated by noncovalent bond interactions. In the absence of oxygen, DA induced less oligomerization of α-synuclein, whereas DA/Cu2+ induced aerobic-level amounts of oligomers, suggesting that DA/Cu2+ induces oligomerization independent of oxygen concentration. Radical species were detected through electron paramagnetic resonance (EPR) spectroscopic analysis arising from coincubation of DA/Cu2+ with α-synuclein. Redox reactions induced by DA/Cu2+ were observed in multimer regions of α-synuclein oligomers through NBT assay. Cellular toxicity results confirm that, for normal and hypoxic conditions, copper or DA/Cu2+ can induce cell death, which may arise from copper redox chemistry. From these results, we propose that DA and DA/Cu2+ induce different mechanisms of α-synuclein oligomerization, cross-linking with noncovalent (or reversible covalent) bonding vs. likely radical-mediated covalent modification.


Assuntos
Cobre/farmacologia , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Hipóxia/metabolismo , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Espectrometria de Massas , Neuroblastoma/patologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , alfa-Sinucleína/farmacologia
18.
Analyst ; 139(7): 1614-7, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24558644

RESUMO

Herein, we present fluorescein as a reversible fluorescent sensor for nerve agent simulants diethylchlorophosphate (DCP), diethyl methylphosphonate (DEMP), and diethyl cyanophosphonate (DECP). The superoxide allows for an "off-on" mechanism to regenerate fluorescein. The order of decrease in fluorescence intensity for nerve agent simulants is DCP > DEMP ≫ DECP.

19.
Talanta ; 269: 125459, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38011812

RESUMO

Fluorescent probes play essential roles in medical imaging, where the researchers can select one of many molecules to use to help monitor the status of living systems under investigation. To date, a few scaffolds that allow the in vivo detection of H2O2 are available only. Herein, we provide a highly sensitive and selective near-infrared fluorescent probe that detects H2O2 based on the ICT sensing mechanism. We report the first indole-incorporated fluorescent probe Indo-H2O2 that allows H2O2 detection with a LOD of 25.2 nM featuring a boronate group conjugated to an indole scaffold; the boronate cleaves upon reaction with H2O2. A 5-membered malononitrile derivative was incorporated; Indo-H2O2 has near-infrared (NIR) properties and the reaction time is low (∼25 min) compared to other related probes. Indo-H2O2 was successfully employed in both endogenous and exogenous imaging trials of H2O2 in living cells. Indo-H2O2 also allows the real-time monitoring of H2O2in vivo. It preferentially accesses the gallbladder of zebrafish. Our findings support Indo-H2O2 as a highly sensitive fluorescent NIR probe for detecting H2O2, and an idea to incorporate a central indole unit in future fluorescent probe designs.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Humanos , Animais , Células HeLa , Peróxido de Hidrogênio , Vesícula Biliar/diagnóstico por imagem , Imagem Óptica/métodos , Indóis
20.
Analyst ; 138(10): 2829-32, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23571476

RESUMO

Highly specific and sensitive fluorescence detection of hypochlorite in nonbiotic pure water (rapid "turn-on", ~400 fold, λ(em) ~ 560 nm) as well as in living neuronal cell cultures (neutral pH) involves oxidation of a 2-sulfide-2-benzoic acid pendent group in a new meso-thienyl-BODIPY donor-acceptor probe.


Assuntos
Compostos de Boro/química , Esterases/metabolismo , Fluorescência , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Neuroblastoma/enzimologia , Benzenossulfonatos/química , Benzoatos/química , Sobrevivência Celular , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa