Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 30(36): 365001, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31151131

RESUMO

Controllable access to the hybrid plasmonic nanostructures built of small metal nanoparticles and organic spacer offers a tempting set of electronic excitations, which proper handling promises valuable applications and bright fundamental prospect. Here, we report on remarkable plasmonic properties of the Au x C60 hybrid nanostructures formed through self-assembling the depositing mixture of metal and fullerene. Using optical absorption spectra, we demonstrate establishing of quantum plasmon (QP) excitations upon the controllable increase of spatial density and size of the Au clusters formed in the films. Detection of two plasmonic modes evidences the QP hybridization enabling by nm-scaled proximity of the neighboured Au clusters. Variation of the QP mode parameters with gradual decrease of the inter-cluster spacing ΔL to the sub-nanometre scale driven by the Au concentration in the film x allowed us to evidence the quantum tunnelling regime in the QP hybridization launching at ΔL ≈ 0.9 nm. The later result designates an important role of the C60 molecules, separating the Au clusters, in design of plasmonic and transport properties of the hybrid films. The obtained results represent the self-assembled Au x C60 nanocomposites as the promising plasmonic materials with potential for application in nanoplasmonics, nanoelectronics, and nanomedicine.

2.
Nanotechnology ; 29(13): 135701, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368694

RESUMO

Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled Co x C60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of Co x C60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C60-related OA lines detected at the photon energies E p  > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E p  > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E p  > 2.5 eV reflect splitting of the C60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.

3.
Sci Technol Adv Mater ; 16(2): 026002, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877779

RESUMO

Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10-30 unit cells. Control of the bandgap is achieved using heteroepitaxial growth of new structural phases on SrTiO3 (001) substrates. Compared to bulk crystals, anomalous bandgap narrowing is obtained in the FE state of KNO and NNO films. This effect opposes polarization-induced bandgap widening, which is typically found for FE materials. Transmission electron microscopy and spectroscopic ellipsometry measurements indicate that the formation of higher-symmetry structural phases of KNO and NNO produces the desirable red shift of the absorption spectrum towards visible light, while simultaneously stabilizing robust FE order. Tuning of optical properties in FE films is of interest for nanoscale photonic and optoelectronic devices.

4.
Sci Technol Adv Mater ; 15(4): 045001, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877702

RESUMO

Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range (n ≈ 2.1 - 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn ≈ 0.05 - 0.2. The thermo-optical behaviour n(T) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO3.

5.
J Nanosci Nanotechnol ; 12(12): 9136-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23447968

RESUMO

We report the creation of a functional nanostructure on a Si crystal surface by 200 keV C60(++) cluster ion bombardment (CIB). We found that the modified layer produced by CIB includes two sublayers with different nanostructures. The top 24-nm-thick sublayer is an agglomeration of 5-nm-sized amorphous Si nanodots (a-Si NDs). The deeper 10-nm-thick sublayer is a transient layer of disordered Si as an interface between the a-Si top sublayer and the bulk Si(100). The top a-Si sublayer and the nc-Si transient layer are formed by the local heating effect and shock wave effect, respectively, induced by the cluster ion impacts. The photoluminescence (PL) spectra of the CIB-modified Si samples revealed an emission line centered at a photon energy of 1.92 eV. The absorption spectra of the modified samples exhibit enhanced light absorption at this photon energy. The parameters of the PL line require ascribing the emission origin to the quantum-confinement-induced optical transitions in the a-Si nanodots. The core-shell structure of a-Si NDs is confirmed by detection of an additional PL line centered at 2.5 eV. Analysis of the Rutherford backscattering (RBS) and the PL spectra implies the existence of -Si--O- bonds in the nanodot outer shells, which are responsible for the additional PL line. The obtained results demonstrate the valuable potential of CIB for the controllable fabrication of Si surface nanostructures, which is attractive for optoelectronics and nanoelectronics. The obtained results elucidate the evolution of structure modification occurring in silicon due to the injection of energetic C60 cluster ions with an energy of hundreds of keV.

6.
Biomacromolecules ; 12(9): 3232-42, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21823677

RESUMO

In this study, we propose substrate-independent modification for creating a protein-repellent surface based on dopamine-melanin anchoring layer used for subsequent binding of poly(ethylene oxide) (PEO) from melt. We verified that the dopamine-melanin layer can be formed on literally any substrate and could serve as the anchoring layer for subsequent grafting of PEO chains. Grafting of PEO from melt in a temperature range 70-110 °C produces densely packed PEO layers showing exceptionally low protein adsorption when exposed to the whole blood serum or plasma. The PEO layers prepared from melt at 110 °C retained the protein repellent properties for as long as 10 days after their exposure to physiological-like conditions. The PEO-dopamine-melanin modification represents a simple and universal surface modification method for the preparation of protein repellent surfaces that could serve as a nonfouling background in various applications, such as optical biosensors and tissue engineering.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Melaninas/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Adsorção , Animais , Técnicas Biossensoriais/métodos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , Materiais Revestidos Biocompatíveis/análise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ligação Proteica , Propriedades de Superfície
7.
Nanomaterials (Basel) ; 10(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024156

RESUMO

Here, we demonstrate the impact of ferromagnetic layer coating on controlling the magneto-optical response. We found that the transverse magneto-optical Kerr effect (TMOKE) signal and TMOKE hysteresis loops of Ni80Fe20 thin layers coated with a Cr layer show a strong dependence on the thickness of the Cr layer and the incidence angle of the light. The transmission and reflection spectra were measured over a range of incidence angles and with different wavelengths so as to determine the layers' optical parameters and to explain the TMOKE behavior. The generalized magneto-optical and ellipsometry (GMOE) model based on modified Abeles characteristic matrices was used to examine the agreement between the experimental and theoretical results. A comprehensive theoretical and experimental analysis reveals the possibility to create a TMOKE suppression/enhancement coating at specific controllable incidence angles. This has potential for applications in optical microscopy and sensors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa