Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Biosci ; 24(3): e2300266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37821117

RESUMO

This study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport. The dual porosity of hydrogels slightly improves rMSCs proliferation compared to the hydrogel with uniform pores. In addition, the laminin coating supports the adhesion of rMSCs to the hydrogel surface. However, hydrogels modified by heptapeptide RGDSGGY significantly stimulate cell adhesion and growth. Moreover, the RGDS-modified hydrogels also affect the topology of proliferating rMSCs, ranging from single-cell to multicellular clusters. The 3D reconstruction of the hydrogels with cells obtained by laser scanning confocal microscopy (LSCM) confirms cell penetration into the inner structure of the hydrogel and its corresponding microstructure. The prepared biodegradable oligopeptide-modified hydrogels with dual porosity are suitable candidates for further in vivo evaluation in soft tissue regeneration.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Hidrogéis/química , Engenharia Tecidual , Porosidade , Adesão Celular , Alicerces Teciduais/química
2.
Biomed Mater ; 14(5): 055004, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31181551

RESUMO

The macroporous synthetic poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels as 3D cellular scaffolds with specific internal morphology, so called dual pore size, were designed and studied. The morphological microstructure of hydrogels was characterized in the gel swollen state and the susceptibility of gels for stem cells was evaluated. The effect of specific chemical groups covalently bound in the hydrogel network by copolymerization on cell adhesion and growth, followed by effect of laminin coating were investigated. The evaluated gels contained either carboxyl groups of the methacrylic acid or quaternary ammonium groups brought by polymerizable ammonium salt or their combinations. The morphology of swollen gel was visualized using the laser scanning confocal microscopy. All hydrogels had very similar porous structures - their matrices contained large pores (up to 102 µm) surrounded with gel walls with small pores (100 µm). The total pore volume in hydrogels swollen in buffer solution ranged between 69 and 86 vol%. Prior to the seeding of the mouse embryonal stem cells, the gels were coated with laminin. The hydrogel with quaternary ammonium groups (with or without laminin) stimulated the cell growth the most. The laminin coating lead to a significant and quaternary ammonium groups. The gel chemical modification influenced also the topology of cell coverage that ranged from individual cell clusters to well dispersed multi cellular structures. Findings in this study point out the laser scanning confocal microscopy as an irreplaceable method for a precise and quick assessment of the hydrogel morphology. In addition, these findings help to optimize the chemical composition of the hydrogel scaffold through the combination of chemical and biological factors leading to intensive cell attachment and proliferation.


Assuntos
Biomimética , Poli-Hidroxietil Metacrilato/química , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Compostos de Amônio/química , Animais , Materiais Biocompatíveis/química , Soluções Tampão , Adesão Celular , Linhagem Celular , Proliferação de Células , Hidrogéis/química , Laminina/química , Metacrilatos/química , Camundongos , Microscopia Confocal , Células-Tronco Embrionárias Murinas/citologia , Porosidade , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos
3.
Polymers (Basel) ; 11(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247964

RESUMO

Self-inflating soft tissue expanders represent a valuable modality in reconstructive surgery. For this purpose, particularly synthetic hydrogels that increase their volume by swelling in aqueous environment are used. The current challenge in the field is to deliver a material with a suitable protracted swelling response, ideally with an induction period (for sutured wound healing) followed by a linear increase in volume lasting several days for required tissue reconstruction. Here, we report on synthesis, swelling, thermal, mechanical and biological properties of novel hydrogel tissue expanders based on poly(styrene-alt-maleic anhydride) copolymers covalently crosslinked with p-divinylbenzene. The hydrogels exerted hydrolysis-driven swelling response with induction period over the first two days with minimal volume change and gradual volume growth within 30 days in buffered saline solution. Their final swollen volume reached more than 14 times the dry volume with little dependence on the crosslinker content. The mechanical coherence of samples during swelling and in their fully swollen state was excellent, the compression modulus of elasticity being between 750 and 850 kPa. In vitro cell culture experiments and in vivo evaluation in mice models showed excellent biocompatibility and suitable swelling responses meeting thus the application requirements as soft tissue expanders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa