Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000516

RESUMO

The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.


Assuntos
Antagonistas dos Receptores CCR5 , Neuropatias Diabéticas , Modelos Animais de Doenças , Receptores CCR2 , Receptores CCR5 , Animais , Camundongos , Neuropatias Diabéticas/tratamento farmacológico , Masculino , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Feminino , Receptores CCR5/metabolismo , Receptores CCR5/genética , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas dos Receptores CCR5/uso terapêutico , Morfina/farmacologia , Morfina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Imidazóis , Sulfóxidos
2.
Toxicol Appl Pharmacol ; 461: 116382, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36681127

RESUMO

Dysfunction of the central nervous system are accompanied by changes in tryptophan metabolism, with the kynurenine pathway (KP) being the main route of its catabolism. Recently, KP metabolites, which are collectively called kynurenines, have become an area of intense research due to their ability to directly and indirectly affect a variety of classic neurotransmitter systems. However, the significance of KP in neuropathic pain is still poorly understood. Therefore, we designed several experiments to verify changes in the mRNA levels of KP enzymes in parallel with other factors related to this metabolic route after chronic constriction injury of the sciatic nerve (CCI model) in mice. The analysis revealed an increase in, Kmo, Kynu and Haoo mRNA levels in the spinal cord on the 7th day after CCI, while Kat1, Kat2, Tdo2, Ido2 and Qprt mRNA levels remain unchanged. Subsequent pharmacological studies provided evidence that modulation of KP by single intrathecal administration of 1-D-MT, UPF468 or L-kynurenine attenuates mechanical and thermal hypersensitivity and increases the effectiveness of selected opioids in mice as measured on day 7 after CCI. Moreover, our results provide the first evidence that the injection of L-kynurenine preceded by UPF468 (KMO inhibitor) is more effective at reducing hypersensitivity in animals with neuropathic pain. Importantly, L-kynurenine also exerts an analgesic effect after intravenous injections, which is enhanced by the administration of minocycline, an inhibitor of microglial activation. Additionally, L-kynurenine administered intrathecally and intravenously enhances analgesia evoked by all tested opioids (morphine, buprenorphine and oxycodone). Overall, our results indicate that the modulation of KP at different levels might be a new pharmacological tool in neuropathy management.


Assuntos
Analgesia , Neuralgia , Camundongos , Animais , Cinurenina/metabolismo , Analgésicos Opioides/farmacologia , Triptofano Oxigenase , Neuralgia/tratamento farmacológico , RNA Mensageiro/genética
3.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240346

RESUMO

Treatment of neuropathic pain remains a challenge for modern medicine due to the insufficiently understood molecular mechanisms of its development and maintenance. One of the most important cascades that modulate the nociceptive response is the family of mitogen-activated protein (MAP) kinases and phosphatidylinositol-3-kinase (PI3K), as well as nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this study was to determine the effect of nonselective modulators of MAP kinases-fisetin (ERK1/2 and NFκB inhibitor, PI3K activator), peimine (MAPK inhibitor), astaxanthin (MAPK inhibitor, Nrf2 activator) and artemisinin (MAPK inhibitor, NFκB activator), as well as bardoxolone methyl (selective activator of Nrf2) and 740 Y-P (selective activator of PI3K)-in mice with peripheral neuropathy and to compare their antinociceptive potency and examine their effect on analgesia induced by opioids. The study was performed using albino Swiss male mice that were exposed to chronic constriction injury of the sciatic nerve (CCI model). Tactile and thermal hypersensitivity was measured using von Frey and cold plate tests, respectively. Single doses of substances were administered intrathecally on day 7 after CCI. Among the tested substances, fisetin, peimine, and astaxanthin effectively diminished tactile and thermal hypersensitivity in mice after CCI, while artemisinin did not exhibit analgesic potency in this model of neuropathic pain. Additionally, both of the activators tested, bardoxolone methyl and 740 Y-P, also showed analgesic effects after intrathecal administration in mice exposed to CCI. In the case of astaxanthin and bardoxolone methyl, an increase in analgesia after combined administration with morphine, buprenorphine, and/or oxycodone was observed. Fisetin and peimine induced a similar effect on tactile hypersensitivity, where analgesia was enhanced after administration of morphine or oxycodone. In the case of 740 Y-P, the effects of combined administration with each opioid were observed only in the case of thermal hypersensitivity. The results of our research clearly indicate that substances that inhibit all three MAPKs provide pain relief and improve opioid effectiveness, especially if they additionally block NF-κB, such as peimine, inhibit NF-κB and activate PI3K, such as fisetin, or activate Nrf2, such as astaxanthin. In light of our research, Nrf2 activation appears to be particularly beneficial. The abovementioned substances bring promising results, and further research on them will broaden our knowledge regarding the mechanisms of neuropathy and perhaps contribute to the development of more effective therapy in the future.


Assuntos
Analgesia , Artemisininas , Neuralgia , Masculino , Camundongos , Animais , Analgésicos Opioides/farmacologia , NF-kappa B/metabolismo , Oxicodona , Fator 2 Relacionado a NF-E2 , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Morfina/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo
4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555280

RESUMO

Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.


Assuntos
Esclerose Múltipla , Receptores CCR4 , Humanos , Quimiocinas
5.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681715

RESUMO

Accumulating evidence suggests the key role of the kynurenine pathway (KP) of the tryptophan metabolism in the pathogenesis of several diseases. Despite extensive research aimed at clarifying the mechanisms underlying the development and maintenance of neuropathic pain, the roles of KP metabolites in this process are still not fully known. Although the function of the peripheral KP has been known for several years, it has only recently been acknowledged that its metabolites within the central nervous system have remarkable consequences related to physiology and behavior. Both the products and metabolites of the KP are involved in the pathogenesis of pain conditions. Apart from the neuroactive properties of kynurenines, the KP regulates several neurotransmitter systems in direct or indirect ways. Some neuroactive metabolites are known to have neuroprotective properties (kynurenic acid, nicotinamide adenine dinucleotide cofactor), while others are toxic (3-hydroxykynurenine, quinolinic acid). Numerous animal models show that modulation of the KP may turn out to be a viable target for the treatment of diseases. Importantly, some compounds that affect KP enzymes are currently described to possess analgesic properties. Additionally, kynurenine metabolites may be useful for assessing response to therapy or as biomarkers in therapeutic monitoring. The following review describes the molecular site of action and changes in the levels of metabolites of the kynurenine pathway in the pathogenesis of various conditions, with a particular emphasis on their involvement in neuropathy. Moreover, the potential clinical implications of KP modulation in chronic pain therapy as well as the directions of new research initiatives are discussed.


Assuntos
Cinurenina/metabolismo , Neuralgia/patologia , Analgésicos/uso terapêutico , Animais , Biomarcadores/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Redes e Vias Metabólicas/genética , Neuralgia/tratamento farmacológico , Ácido Quinolínico/química , Ácido Quinolínico/metabolismo , Ácido Quinolínico/uso terapêutico , Triptofano/metabolismo
6.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681732

RESUMO

Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.


Assuntos
Acetamidas/farmacologia , Analgésicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores CXCR3/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Acetamidas/uso terapêutico , Analgésicos/uso terapêutico , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Pirimidinas/uso terapêutico , Ratos , Ratos Wistar , Receptores CXCR3/metabolismo , Receptores de Interleucina-8B/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Estresse Mecânico
7.
Immunology ; 159(4): 413-428, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31919846

RESUMO

A growing body of evidence has indicated that the release of nociceptive factors, such as interleukins and chemokines, by activated immune and glial cells has crucial significance for neuropathic pain generation and maintenance. Moreover, changes in the production of nociceptive immune factors are associated with low opioid efficacy in the treatment of neuropathy. Recently, it has been suggested that CC chemokine receptor type 1 (CCR1) signaling is important for nociception. Our study provides evidence that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with significant up-regulation of endogenous CCR1 ligands, namely, CCL2, CCL3, CCL4, CCL6, CCL7 and CCL9 in the spinal cord and CCL2, CCL6, CCL7 and CCL9 in dorsal root ganglia (DRG). We showed that single and repeated intrathecal administration of J113863 (an antagonist of CCR1) attenuated mechanical and thermal hypersensitivity. Moreover, repeated administration of a CCR1 antagonist enhanced the analgesic properties of morphine and buprenorphine after CCI. Simultaneously, repeated administration of J113863 reduced the protein levels of IBA-1 in the spinal cord and MPO and CD4 in the DRG and, as a consequence, the level of pronociceptive factors, such as interleukin-1ß (IL-1ß), IL-6 and IL-18. The data obtained provide evidence that CCR1 blockade reduces hypersensitivity and increases opioid-induced analgesia through the modulation of neuroimmune interactions.


Assuntos
Analgésicos/farmacologia , Buprenorfina/farmacologia , Hiperalgesia/tratamento farmacológico , Morfina/farmacologia , Neuralgia/tratamento farmacológico , Receptores CCR1/imunologia , Xantenos/farmacologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Gânglios Espinais/fisiopatologia , Regulação da Expressão Gênica , Hiperalgesia/genética , Hiperalgesia/imunologia , Hiperalgesia/fisiopatologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Neuralgia/genética , Neuralgia/imunologia , Neuralgia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Peroxidase/genética , Peroxidase/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Ratos , Ratos Wistar , Receptores CCR1/antagonistas & inibidores , Receptores CCR1/genética , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Transdução de Sinais
8.
Mol Cell Probes ; 54: 101671, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160071

RESUMO

Traumatic brain injury (TBI) is the leading cause of death in the global population. Disturbed inflammatory processes after TBI exacerbate secondary brain injury and contribute to unfavorable outcomes. Multiple inflammatory events that accompany brain trauma, such as glial activation, chemokine release, or the initiation of the complement system cascade, have been identified as potential targets for TBI treatment. However, the participation of chemokines in the complement activation remains unknown. Our studies sought to determine the changes in the expression of the molecules involved in the CCL2/CCL7/CCL12/CCR2 pathway in the injured brain and the effect of CCL2, CCL7, and CCL12 (10, 100, and 500 ng/mL) on the classic and lectin complement pathways and inflammatory factors in microglial cell cultures. Brain injury in mice was modeled by controlled cortical impact (CCI). Our findings indicate a time-dependent upregulation of CCL2, CCL7, and CCL12 at the mRNA and protein levels within the cortex, striatum, and/or thalamus beginning 24 h after the trauma. The analysis of the expression of the receptor of the tested chemokines, CCR2, revealed its substantial upregulation within the injured brain areas mainly on the mRNA level. Using primary cortical microglial cell cultures, we observed a substantial increase in the expression of CCL2, CCL7, and CCL12 after 24 h of LPS (100 ng/mL) treatment. CCL2 stimulation of microglia increased the level of IL-1ß mRNA but did not influence the expression of IL-18, IL-6, and IL-10. Moreover, CCL2 significantly increased the expression of Iba1, a marker of microglia activation. CCL2 and CCL12 upregulated the expression of C1qa but did not influence the expression of C1ra and C1s1 (classical pathway); moreover, CCL2 increased ficolin A expression and reduced collectin 11 expression (lectin pathway). Additionally, we observed the downregulation of pentraxin 3, a modulator of the complement cascade, after CCL2 and CCL12 treatment. We did not detect the expression of ficolin B, Mbl1, and Mbl2 in microglial cells. Our data identify CCL2 as a modulator of the classical and lectin complement pathways suggesting that CCL2 may be a promising target for pharmacological intervention after brain injury. Moreover, our study provides evidence that CCL2 and two other CCR2 ligands may play a role in the development of changes in TBI.


Assuntos
Lesões Encefálicas Traumáticas/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Proteínas do Sistema Complemento/metabolismo , Microglia/metabolismo , Proteínas Quimioatraentes de Monócitos/metabolismo , Receptores CCR2/metabolismo , Regulação para Cima , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quimioatraentes de Monócitos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR2/genética , Transdução de Sinais , Fatores de Tempo
9.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375205

RESUMO

The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein-GFAP), microglia/macrophages (allograft inflammatory factor 1-IBA-1), and microglia (transmembrane protein 119-TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.


Assuntos
Lesões Encefálicas Traumáticas/genética , Ativação do Complemento/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Lectinas/genética , Animais , Lesões Encefálicas Traumáticas/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Complemento C1/genética , Complemento C1/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C1r/genética , Complemento C1r/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hipocampo/metabolismo , Humanos , Lectinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neostriado/metabolismo , Tálamo/metabolismo , Fatores de Tempo
10.
Cytokine ; 119: 202-213, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003094

RESUMO

The complex neuroimmunological interactions mediated by chemokines are suggested to be responsible for the development of neuropathic pain. The lack of knowledge regarding the detailed pathomechanism of neuropathy is one reason for the lack of optimally efficient therapies. Recently, several lines of evidence indicated that expression of CCR2 is increased in spinal cord neurons and microglial cells after peripheral nerve injury. It was previously shown that administration of CCR2 antagonists induces analgesic effects; however, the role of CCR2 ligands in neuropathic pain still needs to be explained. Thus, the goal of our studies was to investigate the roles of CCL2, CCL7, and CCL12 in neuropathic pain development and opioid effectiveness. The experiments were conducted on primary glial cell cultures and two groups of mice: naive and neuropathic. We used chronic constriction injury (CCI) of the sciatic nerve as a neuropathic pain model. Mice intrathecally received chemokines (CCL2, CCL7, CCL12) at a dose of 10, 100 or 500 ng, neutralizing antibodies (anti-CCL2, anti-CCL7) at a dose of 1, 4 or 8 µg, and opioids (morphine, buprenorphine) at a dose of 1 µg. The pain-related behaviors were assessed using the von Frey and cold plate tests. The biochemical analysis of mRNA expression of glial markers, CCL2, CCL7 and CCL12 was performed using quantitative reverse transcriptase real-time PCR. We demonstrated that CCI of the sciatic nerve elevated spinal expression of CCL2, CCL7 and CCL12 in mice, in parallel with microglia and astroglial activation markers. Moreover, intrathecal injection of CCL2 and CCL7 induced pain-related behavior in naive mice in a dose-dependent manner. Surprisingly, intrathecal injection of CCL12 did not influence nociceptive transmission in naive or neuropathic mice. Additionally, we showed for the first time that intrathecal injection of CCL2 and CCL7 neutralizing antibodies not only attenuated CCI-induced pain-related behaviors in mice but also augmented the analgesia induced by morphine and buprenorphine. In vitro studies suggest that both microglia and astrocytes are an important cellular sources of the examined chemokines. Our results revealed the crucial roles of CCL2 and CCL7, but not CCL12, in neuropathic pain development and indicated that pharmacological modulation of these factors may serve as a potential therapeutic target for new (co)analgesics.


Assuntos
Analgésicos Opioides/farmacologia , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Analgesia/métodos , Animais , Astrócitos/metabolismo , Células Cultivadas , Masculino , Camundongos , Microglia/metabolismo , Proteínas Quimioatraentes de Monócitos/metabolismo , Neuroglia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Wistar , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo
11.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004489

RESUMO

Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.

12.
Brain Sci ; 13(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37190544

RESUMO

Neuropathic pain pathophysiology is not fully understood, but it was recently shown that MIP-1 family members (CCL3, CCL4, and CCL9) have strong pronociceptive properties. Our goal was to examine how pharmacological modulation of these chemokines and their receptors (CCR1 and CCR5) influence hypersensitivity after nerve injury in Albino Swiss male mice. The spinal changes in the mRNA/protein levels of the abovementioned chemokines and their receptors were measured using RT-qPCR and ELISA/Western blot techniques in a mouse model of chronic constriction injury of the sciatic nerve. Behavioral studies were performed using the von Frey and cold plate tests after pharmacological treatment with neutralizing antibodies (nAbs) against chemokines or antagonists (CCR1-J113863, CCR5-TAK-220/AZD-5672) alone and in coadministration with morphine on Day 7, when the hypersensitivity was fully developed. Our results showed enhanced protein levels of CCL3 and CCL9 1 and 7 days after nerve injury. The single intrathecal administration of CCL3 or CCL9 nAb, J113863, TAK-220, or AZD-5672 diminished neuropathic pain symptoms and enhanced morphine analgesia. These findings highlight the important roles of CCL3 and CCL9 in neuropathic pain and additionally indicate that these chemokines play essential roles in opioid analgesia. The obtained results suggest CCR1 and CCR5 as new, interesting targets in neuropathy treatment.

13.
Brain Sci ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371338

RESUMO

Neuropathic pain remains a clinical challenge due to its complex and not yet fully understood pathomechanism, which result in limited analgesic effectiveness of the management offered, particularly for patients with acute, refractory neuropathic pain states. In addition to the introduction of several modern therapeutic approaches, such as neuromodulation or novel anti-neuropathic drugs, significant efforts have been made in the repurposing of well-known substances such as phenytoin. Although its main mechanism of action occurs at sodium channels in excitable and non-excitable cells and is well documented, how the drug affects the disturbed neuropathic interactions at the spinal cord level and how it influences morphine-induced analgesia have not been clarified, both being crucial from a clinical perspective. We demonstrated that single and repeated systemic administrations of phenytoin decreased tactile and thermal hypersensitivity in an animal model of neuropathic pain. Importantly, we observed an increase in the antinociceptive effect on thermal stimuli with repeated administrations of phenytoin. This is the first study to report that phenytoin improves morphine-induced antinociceptive effects and influences microglia/macrophage activity at the spinal cord and dorsal root ganglion levels in a neuropathic pain model. Our findings support the hypothesis that phenytoin may represent an effective strategy for neuropathic pain management in clinical practice, particularly when combination with opioids is needed.

14.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513935

RESUMO

Neuropathic pain is a chronic condition that significantly reduces the quality of life of many patients as a result of ineffective pain relief therapy. For that reason, looking for new analgesics remains an important issue. Mirogabalin is a new gabapentinoid that is a specific ligand for the α2σ-1 and α2σ-2 subunits of voltage-gated calcium channels. In the present study, we compared the analgesic effect of pregabalin and mirogabalin in a neuropathic pain chronic constriction injury (CCI) of the sciatic nerve in a mouse model. The main purpose of our study was to determine the effectiveness of mirogabalin administered both once and repeatedly and to explain how the drug influences highly activated cells at the spinal cord level in neuropathy. We also sought to understand whether mirogabalin modulates the selected intracellular pathways (p38MAPK, ERK, JNK) and chemokines (CCL2, CCL5) important for nociceptive transmission, which is crucial information from a clinical perspective. First, our study provides evidence that a single mirogabalin administration diminishes tactile hypersensitivity more effectively than pregabalin. Second, research shows that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This study reports that repeated intraperitoneally (i.p.) mirogabalin administration strongly prevents spinal microglia/macrophage activation evoked by nerve injury, slightly suppresses astroglia and neutrophil infiltration, and reduces the p38MAPK levels associated with neuropathic pain, as measured on Day 7. Moreover, mirogabalin strongly diminished the levels of the pronociceptive chemokines CCL2 and CCL5. Our results indicate that mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain.

15.
Chem Biol Drug Des ; 101(2): 278-325, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35713377

RESUMO

A series of 10 aminoalkanol derivatives of 5-chloro-2- or 5-chloro-4-methylxanthone was synthetized and evaluated for anticonvulsant properties (MES test, mice, intraperitoneal) and compared with neurotoxicity rotarod test (NT, mice, i.p.). The best results both in terms of anticonvulsant activity and protective index value were obtained for 3: 5-chloro-2-([4-hydroxypiperidin-1-yl]methyl)-9H-xanthen-9-one hydrochloride. Compounds: 1-3, 7 and 10 revealed ED50 values in MES test: 42.78, 31.64, 25.76, 46.19 and 52.50 mg/kg b.w., respectively. 3 showed 70% and 72% of inhibition control specific binding of sigma-1 (σ1) and sigma-2 (σ2) receptor, respectively. 3 exhibited also antinociceptive activity at dose 2 mg/kg b.w. after chronic constriction injury in mice. 1, 3, 7 and 10 were evaluated on gastrointestinal flora and proved safe. In genotoxicity test (UMU-Chromotest) compounds 1, 7 and 10 proved safe at dose 150-300 µg/ml. The pharmacokinetic analysis showed rapid absorption of all studied molecules from the digestive tract (tmax  = 5-30 min). The bioavailability of the compounds ranged from 6.6% (1) to 16% (10). All studied compounds penetrate the blood-brain barrier with brain to plasma ratios varied from 4.15 (3) to 7.6 (compound 7), after i.v. administration, and from 1 (7) to 5.72 (3) after i.g. administration.


Assuntos
Anticonvulsivantes , Xantonas , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Convulsões/tratamento farmacológico , Eletrochoque , Xantonas/farmacologia , Xantonas/uso terapêutico , Xantonas/química , Relação Estrutura-Atividade
16.
Cells ; 12(1)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36611891

RESUMO

Neuropathic pain treatment remains a challenging issue because the therapies currently used in the clinic are not sufficiently effective. Moreover, the mechanism of neuropathy is still not entirely understood; however, much evidence indicates that chemokines are important factors in the initial and late phases of neuropathic pain. To date, the roles of CCR1, CCR3 and their endogenous ligands have not been extensively studied; therefore, they have become the subject of our research. In the present comprehensive behavioral and biochemical study, we detected significant time-dependent and long-lasting increases in the mRNA levels of CCR1 and/or CCR3 ligands, such as CCL2/3/4/5/6/7/8/9, in the murine spinal cord after chronic constriction injury of the sciatic nerve, and these increases were accompanied by changes in the levels of microglial/macrophage, astrocyte and neutrophil cell markers. ELISA results suggested that endogenous ligands of CCR1 and CCR3 are involved in the development (CCL2/3/5/7/8/9) and persistence (CCL2/7/8) of neuropathic pain. Moreover, intrathecal injection of CCL2/3/5/7/8/9 confirmed their possible strong influence on mechanical and thermal hypersensitivity development. Importantly, inhibition of CCL2/7/8 production and CCR1 and CCR3 blockade by selective/dual antagonists effectively reduced neuropathic pain-like behavior. The obtained data suggest that CCL2/7/8/CCR1 and CCL7/8/CCR3 signaling are important in the modulation of neuropathic pain in mice and that these chemokines and their receptors may be interesting targets for future investigations.


Assuntos
Neuralgia , Camundongos , Animais , Modelos Animais de Doenças , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Quimiocinas , Microglia , Macrófagos , Ligantes , Receptores CCR3 , Receptores CCR1
17.
Front Immunol ; 13: 1058204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618360

RESUMO

Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.


Assuntos
Buprenorfina , Quimiocinas C , Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/uso terapêutico , Morfina/farmacologia , Morfina/uso terapêutico , Buprenorfina/uso terapêutico , Animais de Laboratório , Receptores de Quimiocinas/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Integrinas/uso terapêutico , Quimiocinas C/genética
18.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056145

RESUMO

Neuropathic pain remains a difficult clinical challenge due to its diverse aetiology and complex pathomechanisms, which are yet to be fully understood. Despite the variety of available therapies, many patients suffer from ineffective pain relief; hence, the search for more efficacious treatments continues. The new gabapentinoid, mirogabalin has recently been approved for clinical use. Although its main mechanism of action occurs at the α2σ-1 and α2σ-2 subunits of calcium channels and is well documented, how the drug affects the disturbed neuropathic interactions at the spinal cord level has not been clarified, which is crucial information from a clinical perspective. The findings of our study suggest that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This is the first study to report that mirogabalin enhances the mRNA expression of spinal antinociceptive factors, such as IL-10 and IL-18BP, and reduces the concentration of the pronociceptive substance P. Importantly, mirogabalin improves the morphine-, buprenorphine-, oxycodone-, and ketamine-induced antinociceptive effects in a neuropathic pain model. Our findings support the hypothesis that enhancing opioid and ketamine analgesia by combining these drugs with mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain.

19.
Front Immunol ; 12: 781310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795678

RESUMO

Neuropathic pain is a serious clinical issue, and its treatment remains a challenge in contemporary medicine. Thus, dynamic development in the area of animal and clinical studies has been observed. The mechanisms of neuropathic pain are still not fully understood; therefore, studies investigating these mechanisms are extremely important. However, much evidence indicates that changes in the activation and infiltration of immune cells cause the release of pronociceptive cytokines and contribute to neuropathic pain development and maintenance. Moreover, these changes are associated with low efficacy of opioids used to treat neuropathy. To date, the role of CC chemokine receptor type 3 (CCR3) in nociception has not been studied. Similarly, little is known about its endogenous ligands (C-C motif ligand; CCL), namely, CCL5, CCL7, CCL11, CCL24, CCL26, and CCL28. Our research showed that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with upregulation of CCL7 and CCL11 in the spinal cord and dorsal root ganglia (DRG). Moreover, our results provide the first evidence that single and repeated intrathecal administration of the CCR3 antagonist SB328437 diminishes mechanical and thermal hypersensitivity. Additionally, repeated administration enhances the analgesic properties of morphine and buprenorphine following nerve injury. Simultaneously, the injection of SB328437 reduces the protein levels of some pronociceptive cytokines, such as IL-6, CCL7, and CCL11, in parallel with a reduction in the activation and influx of GFAP-, CD4- and MPO-positive cells in the spinal cord and/or DRG. Moreover, we have shown for the first time that an inhibitor of myeloperoxidase-4-aminobenzoic hydrazide may relieve pain and simultaneously enhance morphine and buprenorphine efficacy. The obtained results indicate the important role of CCR3 and its modulation in neuropathic pain treatment and suggest that it represents an interesting target for future investigations.


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Receptores CCR3/antagonistas & inibidores , Analgésicos/administração & dosagem , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Animais , Biomarcadores , Buprenorfina/farmacologia , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Esquema de Medicação , Sinergismo Farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Morfina/farmacologia , Neuralgia/etiologia , Ratos , Medula Espinal , Fatores de Tempo , Resultado do Tratamento
20.
Int Immunopharmacol ; 84: 106540, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32402949

RESUMO

The latest research highlights the role of chemokine signaling pathways in the development of nerve injury-induced pain. Recent studies have provided evidence for the involvement of CCR2 and CCR5 in the pathomechanism underlying neuropathy. Thus, the aim of our study was to compare the effects of a selective CCR2 antagonist (RS504393), selective CCR5 antagonist (maraviroc) and dual CCR2/CCR5 antagonist (cenicriviroc) and determine whether the simultaneous blockade of both receptors is better than blocking only one of them selectively. All experiments were performed using Wistar rats/Swiss albino mice subjected to chronic constriction injury (CCI) of the sciatic nerve. To assess pain-related reactions, the von Frey and cold plate tests were used. The mRNA analysis was performed using RT-qPCR. We demonstrated that repeated intrathecal administration of the examined antagonists attenuated neuropathic pain in rats 7 days post-CCI. mRNA analysis showed that RS504393 did not modulate the spinal expression of the examined chemokines, whereas maraviroc reduced the CCI-induced elevation of CCL4 level. Cenicriviroc significantly lowered the spinal levels of CCL2-4 and CCL7. At the dorsal root ganglia, strong impacts of RS504393 and cenicriviroc on chemokine expression were observed; both reduced the CCI-induced elevation of CCL2-5 and CCL7 levels, whereas maraviroc decreased only the CCL5 level. Importantly, we demonstrated that a single intrathecal/intraperitoneal injection of cenicriviroc had greater analgesic properties than RS504393 or maraviroc in neuropathic mice. Additionally, we demonstrated that cenicriviroc enhanced opioid-induced analgesia. Based on our results, we suggest that targeting CCR2 and CCR5 simultaneously, is an interesting alternative for neuropathic pain pharmacotherapy.


Assuntos
Analgésicos/uso terapêutico , Benzoxazinas/uso terapêutico , Antagonistas dos Receptores CCR5/uso terapêutico , Imidazóis/uso terapêutico , Maraviroc/uso terapêutico , Neuralgia/tratamento farmacológico , Neuropatia Ciática/tratamento farmacológico , Compostos de Espiro/uso terapêutico , Sulfóxidos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Quimiocinas CC/genética , Injeções Intraperitoneais , Injeções Espinhais , Masculino , Camundongos , Neuralgia/genética , Ratos Wistar , Receptores CCR2/antagonistas & inibidores , Nervo Isquiático/lesões , Neuropatia Ciática/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa