Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7982): 255-260, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648866

RESUMO

Neptune-sized planets exhibit a wide range of compositions and densities, depending on factors related to their formation and evolution history, such as the distance from their host stars and atmospheric escape processes. They can vary from relatively low-density planets with thick hydrogen-helium atmospheres1,2 to higher-density planets with a substantial amount of water or a rocky interior with a thinner atmosphere, such as HD 95338 b (ref. 3), TOI-849 b (ref. 4) and TOI-2196 b (ref. 5). The discovery of exoplanets in the hot-Neptune desert6, a region close to the host stars with a deficit of Neptune-sized planets, provides insights into the formation and evolution of planetary systems, including the existence of this region itself. Here we show observations of the transiting planet TOI-1853 b, which has a radius of 3.46 ± 0.08 Earth radii and orbits a dwarf star every 1.24 days. This planet has a mass of 73.2 ± 2.7 Earth masses, almost twice that of any other Neptune-sized planet known so far, and a density of 9.7 ± 0.8 grams per cubic centimetre. These values place TOI-1853 b in the middle of the Neptunian desert and imply that heavy elements dominate its mass. The properties of TOI-1853 b present a puzzle for conventional theories of planetary formation and evolution, and could be the result of several proto-planet collisions or the final state of an initially high-eccentricity planet that migrated closer to its parent star.

3.
Nature ; 583(7814): 39-42, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612222

RESUMO

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune 'desert'1,2 (a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b3, which is thought to have an unusually massive core, and recent discoveries such as LTT9779b4 and NGTS-4b5, on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune's but an anomalously large mass of [Formula: see text] Earth masses and a density of [Formula: see text] grams per cubic centimetre, similar to Earth's. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than [Formula: see text] per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation6. Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.

4.
Nature ; 582(7813): 497-500, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32581383

RESUMO

AU Microscopii (AU Mic) is the second closest pre-main-sequence star, at a distance of 9.79 parsecs and with an age of 22 million years1. AU Mic possesses a relatively rare2 and spatially resolved3 edge-on debris disk extending from about 35 to 210 astronomical units from the star4, and with clumps exhibiting non-Keplerian motion5-7. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic 'activity' on the star8,9. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3σ confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.

6.
Nature ; 534(7609): 658-61, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27324846

RESUMO

Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals­the building blocks of planets­are produced within the first million years of a star's life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5­10 million years old and has a tenuous dust disk extending outward from about twice the Earth­Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth­Sun separation.

7.
Nature ; 526(7574): 546-9, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26490620

RESUMO

Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.

8.
Nature ; 499(7456): 55-8, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23803764

RESUMO

Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy.

9.
Nature ; 486(7403): 375-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22722196

RESUMO

The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.

10.
Nature ; 481(7382): 475-9, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22237021

RESUMO

Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.


Assuntos
Planetas , Meio Ambiente Extraterreno/química , Voo Espacial , Astronave , Astros Celestes
11.
Nature ; 482(7384): 195-8, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22186831

RESUMO

Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

12.
Proc Natl Acad Sci U S A ; 109(21): 7982-7, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566651

RESUMO

We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.


Assuntos
Astronomia/métodos , Meio Ambiente Extraterreno , Júpiter , Modelos Teóricos , Planetas , Planeta Terra , Temperatura Alta , Netuno
13.
Astrophys J Lett ; 868(2)2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31360431

RESUMO

We report the detection of a transiting planet around π Men (HD 39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The solar-type host star is unusually bright (V = 5.7) and was already known to host a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered planet has a size of 2.04 ± 0.05 R ⊕ and an orbital period of 6.27 days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays a 6.27-day periodicity, confirming the existence of the planet and leading to a mass determination of 4.82±0.85 M ⊕. The star's proximity and brightness will facilitate further investigations, such as atmospheric spectroscopy, asteroseismology, the Rossiter-McLaughlin effect, astrometry, and direct imaging.

14.
Astrophys J Suppl Ser ; 235(2)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32908325

RESUMO

We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching four years of Kepler time series photometry (Data Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new in this catalog and include two new candidates in multi-planet systems (KOI-82.06 and KOI-2926.05), and ten new high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter which automatically vets the DR25 Threshold Crossing Events (TCEs) found by the Kepler Pipeline (Twicken et al. 2016). Because of this automation, we were also able to vet simulated data sets and therefore measure how well the Robovetter separates those TCEs caused by noise from those caused by low signal-to-noise transits. Because of these measurements we fully expect that this catalog can be used to accurately calculate the frequency of planets out to Kepler's detection limit, which includes temperate, super-Earth size planets around GK dwarf stars in our Galaxy. This paper discusses the Robovetter and the metrics it uses to decide which TCEs are called planet candidates in the DR25 KOI catalog. We also discuss the simulated transits, simulated systematic noise, and simulated astrophysical false positives created in order to characterize the properties of the final catalog. For orbital periods less than 100 d the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates found between 200 and 500 days, our measurements indicate that the Robovetter is 73.5% complete and 37.2% reliable across all searched stars (or 76.7% complete and 50.5% reliable when considering just the FGK dwarf stars). We describe how the measured completeness and reliability varies with period, signal-to-noise, number of transits, and stellar type. Also, we discuss a value called the disposition score which provides an easy way to select a more reliable, albeit less complete, sample of candidates. The entire KOI catalog, the transit fits using Markov chain Monte Carlo methods, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive.

15.
Science ; 344(6181): 277-80, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24744370

RESUMO

The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.


Assuntos
Planetas , Astros Celestes , Planeta Terra , Exobiologia , Meio Ambiente Extraterreno , Água
16.
Science ; 330(6000): 51-4, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20798283

RESUMO

The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa