RESUMO
BACKGROUND: Quantitative diffusion-weighted imaging (DWI) MRI is a promising technique for cancer characterization and treatment monitoring. Knowledge of the reproducibility of DWI metrics in breast tumors is necessary to apply DWI as a clinical biomarker. PURPOSE: To evaluate the repeatability and reproducibility of breast tumor apparent diffusion coefficient (ADC) in a multi-institution clinical trial setting, using standardized DWI protocols and quality assurance (QA) procedures. STUDY TYPE: Prospective. SUBJECTS: In all, 89 women from nine institutions undergoing neoadjuvant chemotherapy for invasive breast cancer. FIELD STRENGTH/SEQUENCE: DWI was acquired before and after patient repositioning using a four b-value, single-shot echo-planar sequence at 1.5T or 3.0T. ASSESSMENT: A QA procedure by trained operators assessed artifacts, fat suppression, and signal-to-noise ratio, and determine study analyzability. Mean tumor ADC was measured via manual segmentation of the multislice tumor region referencing DWI and contrast-enhanced images. Twenty cases were evaluated multiple times to assess intra- and interoperator variability. Segmentation similarity was assessed via the Sørenson-Dice similarity coefficient. STATISTICAL TESTS: Repeatability and reproducibility were evaluated using within-subject coefficient of variation (wCV), intraclass correlation coefficient (ICC), agreement index (AI), and repeatability coefficient (RC). Correlations were measured by Pearson's correlation coefficients. RESULTS: In all, 71 cases (80%) passed QA evaluation: 44 at 1.5T, 27 at 3.0T; 60 pretreatment, 11 after 3 weeks of taxane-based treatment. ADC repeatability was excellent: wCV = 4.8% (95% confidence interval [CI] 4.0, 5.7%), ICC = 0.97 (95% CI 0.95, 0.98), AI = 0.83 (95% CI 0.76, 0.87), and RC = 0.16 * 10-3 mm2 /sec (95% CI 0.13, 0.19). The results were similar across field strengths and timepoint subgroups. Reproducibility was excellent: interreader ICC = 0.92 (95% CI 0.80, 0.97) and intrareader ICC = 0.91 (95% CI 0.78, 0.96). DATA CONCLUSION: Breast tumor ADC can be measured with excellent repeatability and reproducibility in a multi-institution setting using a standardized protocol and QA procedure. Improvements to DWI image quality could reduce loss of data in clinical trials. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1617-1628.
Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Adulto , Idoso , Artefatos , Biomarcadores/metabolismo , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Ensaios Clínicos como Assunto , Meios de Contraste , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Variações Dependentes do Observador , Estudos Prospectivos , Garantia da Qualidade dos Cuidados de Saúde , Controle de Qualidade , Receptor ErbB-2/metabolismo , Reprodutibilidade dos Testes , Razão Sinal-RuídoRESUMO
Purpose To determine if the change in tumor apparent diffusion coefficient (ADC) at diffusion-weighted (DW) MRI is predictive of pathologic complete response (pCR) to neoadjuvant chemotherapy for breast cancer. Materials and Methods In this prospective multicenter study, 272 consecutive women with breast cancer were enrolled at 10 institutions (from August 2012 to January 2015) and were randomized to treatment with 12 weekly doses of paclitaxel (with or without an experimental agent), followed by 12 weeks of treatment with four cycles of anthracycline. Each woman underwent breast DW MRI before treatment, at early treatment (3 weeks), at midtreatment (12 weeks), and after treatment. Percentage change in tumor ADC from that before treatment (ΔADC) was measured at each time point. Performance for predicting pCR was assessed by using the area under the receiver operating characteristic curve (AUC) for the overall cohort and according to tumor hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) disease subtype. Results The final analysis included 242 patients with evaluable serial imaging data, with a mean age of 48 years ± 10 (standard deviation); 99 patients had HR-positive (hereafter, HR+)/HER2-negative (hereafter, HER2-) disease, 77 patients had HR-/HER2- disease, 42 patients had HR+/HER2+ disease, and 24 patients had HR-/HER2+ disease. Eighty (33%) of 242 patients experienced pCR. Overall, ΔADC was moderately predictive of pCR at midtreatment/12 weeks (AUC = 0.60; 95% confidence interval [CI]: 0.52, 0.68; P = .017) and after treatment (AUC = 0.61; 95% CI: 0.52, 0.69; P = .013). Across the four disease subtypes, midtreatment ΔADC was predictive only for HR+/HER2- tumors (AUC = 0.76; 95% CI: 0.62, 0.89; P < .001). In a test subset, a model combining tumor subtype and midtreatment ΔADC improved predictive performance (AUC = 0.72; 95% CI: 0.61, 0.83) over ΔADC alone (AUC = 0.57; 95% CI: 0.44, 0.70; P = .032.). Conclusion After 12 weeks of therapy, change in breast tumor apparent diffusion coefficient at MRI predicts complete pathologic response to neoadjuvant chemotherapy. © RSNA, 2018 Online supplemental material is available for this article.