RESUMO
Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action. The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.
Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genômica , Humanos , Prevalência , Vigilância em Saúde Pública/métodos , Estados Unidos/epidemiologiaRESUMO
Outbreak investigations use data from interviews, healthcare providers, laboratories and surveillance systems. However, integrated use of data from multiple sources requires a patchwork of software that present challenges in usability, interoperability, confidentiality, and cost. Rapid integration, visualization and analysis of data from multiple sources can guide effective public health interventions. We developed MicrobeTrace to facilitate rapid public health responses by overcoming barriers to data integration and exploration in molecular epidemiology. MicrobeTrace is a web-based, client-side, JavaScript application (https://microbetrace.cdc.gov) that runs in Chromium-based browsers and remains fully operational without an internet connection. Using publicly available data, we demonstrate the analysis of viral genetic distance networks and introduce a novel approach to minimum spanning trees that simplifies results. We also illustrate the potential utility of MicrobeTrace in support of contact tracing by analyzing and displaying data from an outbreak of SARS-CoV-2 in South Korea in early 2020. MicrobeTrace is developed and actively maintained by the Centers for Disease Control and Prevention. Users can email microbetrace@cdc.gov for support. The source code is available at https://github.com/cdcgov/microbetrace.
Assuntos
Doenças Transmissíveis/epidemiologia , Visualização de Dados , Epidemiologia Molecular/métodos , Saúde Pública/métodos , Software , Centers for Disease Control and Prevention, U.S. , Surtos de Doenças , Humanos , Estados UnidosRESUMO
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease.
Assuntos
Kinetoplastida/genética , Doenças das Plantas/genética , Análise de Sequência de DNA , Trypanosomatina/genética , Animais , Cocos/genética , Cocos/parasitologia , Café/genética , Café/parasitologia , França , Genoma , Humanos , Kinetoplastida/patogenicidade , Doenças das Plantas/parasitologia , Sementes/parasitologia , Trypanosomatina/patogenicidadeRESUMO
We investigated transmission dynamics of a large human immunodeficiency virus (HIV) outbreak among persons who inject drugs (PWID) in KY and OH during 2017-20 by using detailed phylogenetic, network, recombination, and cluster dating analyses. Using polymerase (pol) sequences from 193 people associated with the investigation, we document high HIV-1 diversity, including Subtype B (44.6 per cent); numerous circulating recombinant forms (CRFs) including CRF02_AG (2.5 per cent) and CRF02_AG-like (21.8 per cent); and many unique recombinant forms composed of CRFs with major subtypes and sub-subtypes [CRF02_AG/B (24.3 per cent), B/CRF02_AG/B (0.5 per cent), and A6/D/B (6.4 per cent)]. Cluster analysis of sequences using a 1.5 per cent genetic distance identified thirteen clusters, including a seventy-five-member cluster composed of CRF02_AG-like and CRF02_AG/B, an eighteen-member CRF02_AG/B cluster, Subtype B clusters of sizes ranging from two to twenty-three, and a nine-member A6/D and A6/D/B cluster. Recombination and phylogenetic analyses identified CRF02_AG/B variants with ten unique breakpoints likely originating from Subtype B and CRF02_AG-like viruses in the largest clusters. The addition of contact tracing results from OH to the genetic networks identified linkage between persons with Subtype B, CRF02_AG, and CRF02_AG/B sequences in the clusters supporting de novo recombinant generation. Superinfection prevalence was 13.3 per cent (8/60) in persons with multiple specimens and included infection with B and CRF02_AG; B and CRF02_AG/B; or B and A6/D/B. In addition to the presence of multiple, distinct molecular clusters associated with this outbreak, cluster dating inferred transmission associated with the largest molecular cluster occurred as early as 2006, with high transmission rates during 2017-8 in certain other molecular clusters. This outbreak among PWID in KY and OH was likely driven by rapid transmission of multiple HIV-1 variants including de novo viral recombinants from circulating viruses within the community. Our findings documenting the high HIV-1 transmission rate and clustering through partner services and molecular clusters emphasize the importance of leveraging multiple different data sources and analyses, including those from disease intervention specialist investigations, to better understand outbreak dynamics and interrupt HIV spread.
RESUMO
Hantaviruses zoonotically infect humans worldwide with pathogenic consequences and are mainly spread by rodents that shed aerosolized virus particles in urine and feces. Bioinformatics methods for hantavirus diagnostics, genomic surveillance and epidemiology are currently lacking a comprehensive approach for data sharing, integration, visualization, analytics and reporting. With the possibility of hantavirus cases going undetected and spreading over international borders, a significant reporting delay can miss linked transmission events and impedes timely, targeted public health interventions. To overcome these challenges, we built HantaNet, a standalone visualization engine for hantavirus genomes that facilitates viral surveillance and classification for early outbreak detection and response. HantaNet is powered by MicrobeTrace, a browser-based multitool originally developed at the Centers for Disease Control and Prevention (CDC) to visualize HIV clusters and transmission networks. HantaNet integrates coding gene sequences and standardized metadata from hantavirus reference genomes into three separate gene modules for dashboard visualization of phylogenetic trees, viral strain clusters for classification, epidemiological networks and spatiotemporal analysis. We used 85 hantavirus reference datasets from GenBank to validate HantaNet as a classification and enhanced visualization tool, and as a public repository to download standardized sequence data and metadata for building analytic datasets. HantaNet is a model on how to deploy MicrobeTrace-specific tools to advance pathogen surveillance, epidemiology and public health globally.
Assuntos
Doenças Transmissíveis , Infecções por Hantavirus , Orthohantavírus , Animais , Humanos , Orthohantavírus/genética , Filogenia , Infecções por Hantavirus/epidemiologia , Doenças Transmissíveis/epidemiologia , Surtos de Doenças , Genômica , RoedoresRESUMO
Toxoplasma gondii possesses a bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS) that synthesizes C(15) and C(20) isoprenoid diphosphates from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This enzyme has a unique arrangement of the fourth and fifth amino acid upstream from the first aspartic rich motif (FARM) where the fourth amino acid is aromatic and the fifth is a cysteine. We mutated these amino acids, converting the enzyme to an absolute FPPS by changing the cysteine to a tyrosine. The enzyme could be converted to an absolute GGPPS by changing both the fourth and fifth amino acids to alanines. We also constructed four mutated TgFPPSs whose regions around the first aspartate rich motif were replaced with the corresponding regions of FPP synthases from Arabidopsis thaliana or Saccharomyces cerevisiae or with the corresponding regions of GGPP synthases from Homo sapiens or S. cerevisiae. We determined that the presence of a cysteine at the fifth position is essential for the TgFPPS bifunctionality. We also found that the length of the N-terminal domain plays a role in determining the specificity and the length of the isoprenoid product. Phylogenetic analysis supports the grouping of this enzyme with other type I FPPSs, but the biochemical data indicate that TgFPPS has unique characteristics that differentiate it from mammalian FPPSs and GGPPSs and is therefore an important drug target.
Assuntos
Geraniltranstransferase/metabolismo , Terpenos/química , Toxoplasma/enzimologia , Animais , Cromatografia em Camada Fina , Geraniltranstransferase/química , Geraniltranstransferase/genética , Mutação , FilogeniaRESUMO
PP(i) is a critical element of cellular metabolism as both an energy donor and as an allosteric regulator of several metabolic pathways. The apicomplexan parasite Toxoplasma gondii uses PP(i) in place of ATP as an energy donor in at least two reactions: the glycolytic PP(i)-dependent PFK (phosphofructokinase) and V-H(+)-PPase [vacuolar H(+)-translocating PPase (pyrophosphatase)]. In the present study, we report the cloning, expression and characterization of cytosolic TgPPase (T. gondii soluble PPase). Amino acid sequence alignment and phylogenetic analysis indicates that the gene encodes a family I soluble PPase. Overexpression of the enzyme in extracellular tachyzoites led to a 6-fold decrease in the cytosolic concentration of PP(i) relative to wild-type strain RH tachyzoites. Unexpectedly, this subsequent reduction in PP(i) was associated with a higher glycolytic flux in the overexpressing mutants, as evidenced by higher rates of proton and lactate extrusion. In addition to elevated glycolytic flux, TgPPase-overexpressing tachyzoites also possessed higher ATP concentrations relative to wild-type RH parasites. These results implicate PP(i) as having a significant regulatory role in glycolysis and, potentially, other downstream processes that regulate growth and cell division.
Assuntos
Difosfatos/metabolismo , Glicólise/fisiologia , Pirofosfatase Inorgânica/biossíntese , Fosfotransferases/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Citosol/enzimologia , Dados de Sequência Molecular , Organelas/metabolismo , Toxoplasma/genéticaRESUMO
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. Like most apicomplexans, T. gondii possesses several plant-like features, such as the chloroplast-like organelle, the apicoplast. We describe and characterize a novel organelle in T. gondii tachyzoites, which is visible by light microscopy and possesses a broad similarity to the plant vacuole. Electron tomography shows the interaction of this vacuole with other organelles. The presence of a plant-like vacuolar proton pyrophosphatase (TgVP1), a vacuolar proton ATPase, a cathepsin L-like protease (TgCPL), an aquaporin (TgAQP1), as well as Ca(2+)/H(+) and Na(+)/H(+) exchange activities, supports similarity to the plant vacuole. Biochemical characterization of TgVP1 in enriched fractions shows a functional similarity to the respective plant enzyme. The organelle is a Ca(2+) store and appears to have protective effects against salt stress potentially linked to its sodium transport activity. In intracellular parasites, the organelle fragments, with some markers colocalizing with the late endosomal marker, Rab7, suggesting its involvement with the endocytic pathway. Studies on the characterization of this novel organelle will be relevant to the identification of novel targets for chemotherapy against T. gondii and other apicomplexan parasites as well.
Assuntos
Toxoplasma/fisiologia , Toxoplasma/ultraestrutura , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Antiporters/metabolismo , Cálcio/metabolismo , Tomografia com Microscopia Eletrônica , Endocitose , Microscopia , Pressão Osmótica , Plantas/ultraestrutura , Bombas de Próton/metabolismo , Proteínas de Protozoários/análise , Sódio/metabolismo , Estresse Fisiológico , Vacúolos/química , Vacúolos/enzimologiaRESUMO
BACKGROUND: Very little is known about influenza viruses circulating in the Democratic Republic of Congo (DRC). We aim to characterize genetically and antigenically Influenza A(H3N2) and A(H1N1)pdm09 viruses circulating in the country. METHODS: From August to December 2014, specimens were collected from patients with influenza like-illness (ILI) or severe acute respiratory infection (SARI) in various surveillance sites. Specimens were tested using real time reverse transcription polymerase chain reaction (RT-PCR) method for the detection of influenza viruses. Positive influenza samples with a cycle threshold (Ct) <30 were genetically and antigenically characterized. RESULTS: 32 samples tested were found positive to influenza A with Ct <30. At CDC Atlanta, 28 out of 32 samples (88%) were tested positive for influenza A virus, including 26 seasonal influenza A viruses subtype H3N2 and 2 pandemic influenza A viruses subtype H1N1pdm 2009. The majority of influenza A(H3N2) viruses were antigenically related to the A/Switzerland/9715293/2013 vaccine virus, while two influenza A(H1N1)pdm09 isolates were antigenically characterized as A/California/07/2009-like. All A(H3N2) and A(H1N1)pdm09 virus isolates characterized were sensitive to oseltamivir and zanamivir. CONCLUSION: Two genetically distinct influenza subtypes were co-circulating in the DRCongo. Effective measures against influenza have been suggested.