Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207276

RESUMO

Satellite navigation is more and more important in a plethora of very different application fields, ranging from bank transactions to shipping, from autonomous driving to aerial applications, such as commercial avionics as well as unmanned aerial vehicles (UAVs). In very precise positioning, navigation, and timing (PNT) applications, such as in reference stations and precise timing stations, it is important to characterize all errors present in the system in order to account possibly for them or calibrate them out. Antennas play an important role in this respect: they are indeed the "sensor" that capture the signal in space from global navigation satellite systems (GNSS) and thereby strongly contribute to the overall achievable performance. This paper reviews the currently available antenna technologies, targeting specifically reference stations as well as precise GNSS antennas for space applications, and, after introducing performance indicators, summarizes the currently achievable performance. Finally, open research issues are identified, and possible approaches to solve them are discussed.

2.
Sensors (Basel) ; 19(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100784

RESUMO

Satellite navigation is more and more important in a plethora of very different application fields, ranging from bank transactions to shipping, from autonomous driving to aerial applications, such as avionics as well as unmanned aerial vehicles (UAVs). Due to the increasing dependency on satellite navigation, the need for robust systems able to counteract unintentional or intentional interferences is growing. When considering interference-robust designs; however, the complexity increases. Top performance is obtained through the use of multi-antenna receivers capable of performing spatial nulling in the direction of the interference signals. In particular, mobile applications (aeronautics, UAVs, automotive) have a substantial interest in robust navigation, but they also have the strongest constraints on the weight and available places for installation, with the use of bigger and heavier systems posing a substantial problem. In order to overcome this limitation, the present work shows a miniaturized five element (4+1) antenna array, which operates at the L1/E1 band (with array capability), as well as at the L5/E5 band (as a single antenna). The proposed antenna array is able to fit into a 3.5-inch footprint, i.e., is compliant with the most widespread footprints for single antennas. Moreover, it is capable of multiband operation and meets the requirements of dual-frequency multi-constellation (DFMC) systems. Thanks to its extreme miniaturization and its compliance with current airborne single antenna footprints, the presented antenna array is suitable for easy integration in future aerial platforms, while enabling robustness and enhancing interference mitigation techniques using multi-antenna processing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa