Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2109508119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394881

RESUMO

CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding protein-7 (CHD7) and characterized by retarded growth and malformations in the heart and nervous system. Despite the public health relevance of this disorder, relevant cellular pathways and targets of CHD7 that relate to disease pathology are still poorly understood. Here we report that chd-7, the nematode ortholog of Chd7, is required for dauer morphogenesis, lifespan determination, stress response, and body size determination. Consistent with our discoveries, we found chd-7 to be allelic to scd-3, a previously identified dauer suppressor from the DAF-7/ tumor growth factor-ß (TGF-ß) pathway. Epistatic analysis places CHD-7 at the level of the DAF-3/DAF-5 complex, but we found that CHD-7 also directly impacts the expression of multiple components of this pathway. Transcriptomic analysis revealed that chd-7 mutants fail to repress daf-9 for execution of the dauer program. In addition, CHD-7 regulates the DBL-1/BMP pathway components and shares roles in male tail development and cuticle synthesis. To explore a potential conserved function for chd-7 in vertebrates, we used Xenopus laevis embryos, an established model to study craniofacial development. Morpholino-mediated knockdown of Chd7 led to a reduction in col2a1 messenger RNA (mRNA) levels, a collagen whose expression depends on TGF-ß signaling. Both embryonic lethality and craniofacial defects in Chd7-depleted tadpoles were partially rescued by overexpression of col2a1 mRNA. We suggest that Chd7 has conserved roles in regulation of the TGF-ß signaling pathway and pathogenic Chd7 could lead to a defective extracellular matrix deposition.


Assuntos
Síndrome CHARGE , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Larva , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
2.
PLoS Genet ; 9(11): e1003873, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24278026

RESUMO

The maintenance of key germline derived DNA methylation patterns during preimplantation development depends on stores of DNA cytosine methyltransferase-1o (DNMT1o) provided by the oocyte. Dnmt1o(mat-/-) mouse embryos born to Dnmt1(Δ1o/Δ1o) female mice lack DNMT1o protein and have disrupted genomic imprinting and associated phenotypic abnormalities. Here, we describe additional female-specific morphological abnormalities and DNA hypomethylation defects outside imprinted loci, restricted to extraembryonic tissue. Compared to male offspring, the placentae of female offspring of Dnmt1(Δ1o/Δ1o) mothers displayed a higher incidence of genic and intergenic hypomethylation and more frequent and extreme placental dysmorphology. The majority of the affected loci were concentrated on the X chromosome and associated with aberrant biallelic expression, indicating that imprinted X-inactivation was perturbed. Hypomethylation of a key regulatory region of Xite within the X-inactivation center was present in female blastocysts shortly after the absence of methylation maintenance by DNMT1o at the 8-cell stage. The female preponderance of placental DNA hypomethylation associated with maternal DNMT1o deficiency provides evidence of additional roles beyond the maintenance of genomic imprints for DNA methylation events in the preimplantation embryo, including a role in imprinted X chromosome inactivation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Impressão Genômica , Inativação do Cromossomo X/genética , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Placenta/anormalidades , Gravidez , RNA Longo não Codificante/genética , Cromossomo X/genética
3.
Pediatr Nephrol ; 29(4): 553-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24005792

RESUMO

The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.


Assuntos
Injúria Renal Aguda/genética , Rim/embriologia , Organogênese/fisiologia , Regeneração/fisiologia , Animais , Humanos
4.
bioRxiv ; 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37090653

RESUMO

The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem-affinity purification from kidney-induced Xenopus animal caps, we identified s ingle- s tranded DNA b inding p rotein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.

5.
Sci Rep ; 13(1): 16671, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794075

RESUMO

The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pronefro , Animais , Xenopus laevis/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rim/metabolismo , Desenvolvimento Embrionário/genética , Morfogênese/genética , Pronefro/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Mamíferos/metabolismo
6.
Proc Natl Acad Sci U S A ; 106(49): 20806-11, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19923434

RESUMO

Reprogramming of DNA methylation patterns during mammalian preimplantation development involves the concurrent maintenance of methylation on differentially methylated domains (DMDs) of imprinted genes and a marked reduction of global (non-DMD) genomic methylation. In the developing mammalian embryo, one allele of a DMD is unmethylated, and the opposite parental allele is methylated, having inherited this methylation from the parental gamete. The maintenance of DMDs is important for monoallelic imprinted gene expression and normal development of the embryo. Because the DNMT1 cytosine methyltransferase governs maintenance methylation in mammals, rearrangements of non-DMD, but not DMD methylation in preimplantation embryos suggest that the preimplantation DNMT1-dependent maintenance mechanism specifically targets DMD sequences. We explored this possibility using an engineered mouse ES cell line to screen for mutant DNMT1 proteins that protect against the loss of DMD and/or global (non-DMD) methylation in the absence of the wild-type endogenous DNMT1 methyltransferase. We identified DNMT1 mutants that were defective in maintenance of either DMD and/or non-DMD methylation. Among these, one mutant maintained non-DMD methylation but not imprinted DMD methylation and another mutant maintained just DMD methylation. The mutated amino acids of these mutants reside in a mammal-specific, disordered region near the amino terminus of DNMT1. These findings suggest that DNMT1 participates in epigenetic reprogramming through its ability to distinguish different categories of methylated sequences.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Impressão Genômica/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Especificidade da Espécie
7.
Sci Rep ; 11(1): 6607, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758327

RESUMO

Gastrulation is a key event in animal embryogenesis during which germ layer precursors are rearranged and the embryonic axes are established. Cell polarization is essential during gastrulation, driving asymmetric cell division, cell movements, and cell shape changes. The furry (fry) gene encodes an evolutionarily conserved protein with a wide variety of cellular functions, including cell polarization and morphogenesis in invertebrates. However, little is known about its function in vertebrate development. Here, we show that in Xenopus, Fry plays a role in morphogenetic processes during gastrulation, in addition to its previously described function in the regulation of dorsal mesoderm gene expression. Using morpholino knock-down, we demonstrate a distinct role for Fry in blastopore closure and dorsal axis elongation. Loss of Fry function drastically affects the movement and morphological polarization of cells during gastrulation and disrupts dorsal mesoderm convergent extension, responsible for head-to-tail elongation. Finally, we evaluate a functional interaction between Fry and NDR1 kinase, providing evidence of an evolutionarily conserved complex required for morphogenesis.


Assuntos
Movimento Celular , Gastrulação , Proteínas Repressoras/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Feminino , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas de Xenopus/genética , Xenopus laevis
8.
Dev Biol ; 324(1): 139-50, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18845137

RESUMO

Most mouse embryos developing in the absence of the oocyte-derived DNA methyltransferase 1o (DNMT1o-deficient embryos) have significant delays in development and a wide range of anatomical abnormalities. To understand the timing and molecular basis of such variation, we studied pre- and post-implantation DNA methylation as a gauge of epigenetic variation among these embryos. DNMT1o-deficient embryos showed extensive differences in the levels of methylation in differentially methylated domains (DMDs) of imprinted genes at the 8-cell stage. Because of independent assortment of the methylated and unmethylated chromatids created by the loss of DNMT1o, the deficient embryos were found to be mosaics of cells with different, but stable epigenotypes (DNA methylation patterns). Our results suggest that loss of DNMT1o in just one cell cycle is responsible for the extensive variation in the epigenotypes in both embryos and their associated extraembryonic tissues. Thus, the maternal-effect DNMT1o protein is uniquely poised during development to normally ensure uniform parental methylation patterns at DMDs.


Assuntos
DNA (Citosina-5-)-Metiltransferases/fisiologia , Metilação de DNA/fisiologia , Implantação do Embrião/fisiologia , Epigênese Genética/fisiologia , Impressão Genômica/fisiologia , Animais , Linhagem Celular , Cromátides/genética , Cromátides/fisiologia , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética/genética , Feminino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Oócitos/metabolismo , Placenta/metabolismo
9.
BMC Dev Biol ; 8: 9, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18221528

RESUMO

BACKGROUND: Identical DNA methylation differences between maternal and paternal alleles in gametes and adults suggest that the inheritance of genomic imprints is strictly due to the embryonic maintenance of DNA methylation. Such maintenance would occur in association with every cycle of DNA replication, including those of preimplantation embryos. RESULTS: The expression of the somatic form of the Dnmt1 cytosine methyltransferase (Dnmt1s) was examined in cleavage-stage preimplantation mouse embryos. Low concentrations of Dnmt1s are found in 1-, 2-, 4-, and 8-cell embryos, as well as in morulae and blastocysts. Dnmt1s is present in the cytoplasm at all stages, and in the nuclei of all stages except the 1-cell, pronuclear-stage embryo. The related oocyte-derived Dnmt1o protein is also present in nuclei of 8-cell embryos, along with embryo-synthesized Dnmt1s. Dnmt1s protein expressed in 1-cell and 2-cell embryos is derived from the oocyte, whereas the embryo synthesizes its own Dnmt1s from the 2-cell stage onward. CONCLUSION: These observations suggest that Dnmt1s provides maintenance methyltransferase activity for the inheritance of methylation imprints in the early mouse embryo. Moreover, the ability of Dnmt1o and Dnmt1s proteins synthesized at the same time to substitute for one another's maintenance function, but the lack of functional interchange between oocyte- and embryo-synthesized Dnmt1 proteins, suggests that the developmental source is the critical determinant of Dnmt1 function during preimplantation development.


Assuntos
Blastocisto/enzimologia , DNA (Citosina-5-)-Metiltransferases/biossíntese , Expressão Gênica , Impressão Genômica , Animais , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Feminino , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/enzimologia , Gravidez
11.
Sci Rep ; 8(1): 16029, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375416

RESUMO

The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Rim/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , MicroRNAs/genética , Organogênese/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Padronização Corporal/genética , Linhagem Celular , Cromatografia Líquida , Ordem dos Genes , Vetores Genéticos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Espectrometria de Massas em Tandem , Xenopus laevis
12.
Gene ; 399(1): 33-45, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17544602

RESUMO

Genomic imprinting is a conserved epigenetic phenomenon in eutherian mammals, with regards both to the genes that are imprinted and the mechanism underlying the expression of just one of the parental alleles. Epigenetic modifications of alleles of imprinted genes are established during oogenesis and spermatogenesis, and these modifications are then inherited. Differentially methylated domains (DMDs) of imprinted genes are the genomic sites of these inherited epigenetic imprints. We previously showed that CpG-rich imperfect tandem direct repeats within three different mouse DMDs (Snurf/Snrpn, Kcnq1 and Igf2r), each with a unique sequence, play a central role in maintaining the differential methylation. This finding implicates repeat-related DNA structure, not sequence, in the imprinting mechanism. To better define the important features of this signal, we compared sequences of these three DMD tandem repeats among mammalian species. All DMD repeats contain short indirect repeats, many of which are organized into larger unit repeats. Even though the larger repeat units undergo deletion and addition during evolution (most likely through unequal crossovers during meiosis), the size of DMD tandem repeated regions has remained remarkably stable during mammalian evolution. Moreover, all three DMD tandem repeats have a high-CpG content, an ordered arrangement of CpG dinucleotides, and similar predicted secondary structures. These observations suggest that a structural feature or features of these DMD tandem repeats is the conserved DMD imprinting signal.


Assuntos
Sequência Conservada/genética , Metilação de DNA , Impressão Genômica , Sequências de Repetição em Tandem/genética , Animais , Sequência de Bases , Ilhas de CpG , Humanos , Canal de Potássio KCNQ1/genética , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Receptor IGF Tipo 2/genética
13.
PLoS One ; 6(4): e18858, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21526205

RESUMO

In the vertebrate embryo, the kidney is derived from the intermediate mesoderm. The LIM-class homeobox transcription factor lhx1 is expressed early in the intermediate mesoderm and is one of the first genes to be expressed in the nephric mesenchyme. In this study, we investigated the role of Lhx1 in specification of the kidney field by either overexpressing or depleting lhx1 in Xenopus embryos or depleting lhx1 in an explant culture system. By overexpressing a constitutively-active form of Lhx1, we established its capacity to expand the kidney field during the specification stage of kidney organogenesis. In addition, the ability of Lhx1 to expand the kidney field diminishes as kidney organogenesis transitions to the morphogenesis stage. In a complimentary set of experiments, we determined that embryos depleted of lhx1, show an almost complete loss of the kidney field. Using an explant culture system to induce kidney tissue, we confirmed that expression of genes from both proximal and distal kidney structures is affected by the absence of lhx1. Taken together our results demonstrate an essential role for Lhx1 in driving specification of the entire kidney field from the intermediate mesoderm.


Assuntos
Padronização Corporal , Proteínas de Homeodomínio/metabolismo , Rim/citologia , Células-Tronco/citologia , Proteínas de Xenopus/metabolismo , Animais , Padronização Corporal/genética , Proliferação de Células , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM , Mesoderma/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos Antissenso/farmacologia , Técnicas de Cultura de Órgãos , Células-Tronco/metabolismo , Fatores de Tempo , Fatores de Transcrição , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/deficiência , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa