Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(51): 13351-13356, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-28760977

RESUMO

Nanoemulsions and microemulsions are environments where oil and water can be solubilized in one another to provide a unique platform for many different biological and industrial applications. Nanoemulsions, unlike microemulsions, have seen little work done to characterize molecular interactions at their surfaces. This study provides a detailed investigation of the near-surface molecular structure of regular (oil in water) and reverse (water in oil) nanoemulsions stabilized with the surfactant dioctyl sodium sulfosuccinate (AOT). Vibrational sum-frequency scattering spectroscopy (VSFSS) is used to measure the vibrational spectroscopy of these AOT stabilized regular and reverse nanoemulsions. Complementary studies of AOT adsorbed at the planar oil-water interface are conducted with vibrational sum-frequency spectroscopy (VSFS). Jointly, these give comparative insights into the orientation of interfacial water and the molecular characterization of the hydrophobic and hydrophilic regions of AOT at the different oil-water interfaces. Whereas the polar region of AOT and surrounding interfacial water molecules display nearly identical behavior at both the planar and droplet interface, there is a clear difference in hydrophobic chain ordering even when possible surface concentration differences are taken into account. This chain ordering is found to be invariant as the nanodroplets grow by Ostwald ripening and also with substitution of different counterions (Na:AOT, K:AOT, and Mg:AOT) that consequently also result in different sized nanoparticles. The results paint a compelling picture of surfactant assembly at these relatively large nanoemulsion surfaces and allow for an important comparison of AOT at smaller micellar (curved) and planar oil-water interfaces.

2.
J Phys Chem B ; 123(40): 8519-8531, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513405

RESUMO

Mixed surfactant systems at the oil-water interface play a vital role in applications ranging widely from drug delivery to oil-spill remediation. Synergistic mixtures are superior emulsifiers and more effective at modifying surface tension than either component alone. Mixtures of surfactants with dissimilar polar head groups are of particular interest because of the additional degree of control they offer. The interplay of hydrophobic and electrostatic effects in these systems is not well understood, in part because of the difficulty in examining their behavior at the buried oil-water interface where they reside. Here, surface-specific vibrational sum frequency spectroscopy is utilized in combination with surface tensiometry and computational methods to probe the cooperative molecular interactions between a cationic surfactant cetyltrimethylammonium bromide (CTAB) and a nonionic alcohol (1-hexanol) that induce the two initially reluctant surfactants to coadsorb synergistically at the interface. A careful deuteration study of CTAB reveals that hexanol cooperates with CTAB such that both molecules preferentially orient at the interface for sufficiently large enough concentrations of hexanol. This work's methodology is unique and serves as a guide for future explorations of macroscopic properties in these complex systems. Results from this work also provide valuable insights into how interfacial ordering impacts surface tensiometry measurements for nonionic surfactants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa