Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chembiochem ; 23(10): e202200076, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35313057

RESUMO

Here, two conformationally constrained sialyl analogues were synthesized and characterized in their interaction with the inhibitory Siglec, human CD22 (h-CD22). An orthogonal approach, including biophysical assays (SPR and fluorescence), ligand-based NMR techniques, and molecular modelling, was employed to disentangle the interaction mechanisms at a molecular level. The results showed that the Sialyl-TnThr antigen analogue represents a promising scaffold for the design of novel h-CD22 inhibitors. Our findings also suggest that the introduction of a biphenyl moiety at position 9 of the sialic acid hampers canonical accommodation of the ligand in the protein binding pocket, even though the affinity with respect to the natural ligand is increased. Our results address the search for novel modifications of the Neu5Ac-α(2-6)-Gal epitope, outline new insights for the design and synthesis of high-affinity h-CD22 ligands, and offer novel prospects for therapeutic intervention to prevent autoimmune diseases and B-cell malignancies.


Assuntos
Linfócitos B , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Ligantes , Ácido N-Acetilneuramínico , Ligação Proteica , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
2.
Molecules ; 27(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630574

RESUMO

Antimicrobial resistance (AMR) poses a serious threat to our society from both the medical and economic point of view, while the antibiotic discovery pipeline has been dwindling over the last decades. Targeting non-essential bacterial pathways, such as those leading to antibiotic persistence, a bacterial bet-hedging strategy, will lead to new molecular entities displaying low selective pressure, thereby reducing the insurgence of AMR. Here, we describe a way to target (p)ppGpp (guanosine tetra- or penta-phosphate) signaling, a non-essential pathway involved in the formation of persisters, with a structure-based approach. A superfamily of enzymes called RSH (RelA/SpoT Homolog) regulates the intracellular levels of this alarmone. We virtually screened several fragment libraries against the (p)ppGpp synthetase domain of our RSH chosen model RelSeq, selected three main chemotypes, and measured their interaction with RelSeq by thermal shift assay and STD-NMR. Most of the tested fragments are selective for the synthetase domain, allowing us to select the aminobenzoic acid scaffold as a hit for lead development.


Assuntos
Antibacterianos , Guanosina Pentafosfato , Antibacterianos/farmacologia , Bactérias/metabolismo , Guanosina Pentafosfato/metabolismo
3.
PLoS Comput Biol ; 15(6): e1007041, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158220

RESUMO

Cadherins are homophilic cell-cell adhesion molecules whose aberrant expression has often been shown to correlate with different stages of tumor progression. In this work, we investigate the interaction of two peptidomimetic ligands with the extracellular portion of human E-cadherin using a combination of NMR and computational techniques. Both ligands have been previously developed as mimics of the tetrapeptide sequence Asp1-Trp2-Val3-Ile4 of the cadherin adhesion arm, and have been shown to inhibit E-cadherin-mediated adhesion in epithelial ovarian cancer cells with millimolar potency. To sample a set of possible interactions of these ligands with the E-cadherin extracellular portion, STD-NMR experiments in the presence of two slightly different constructs, the wild type E-cadherin-EC1-EC2 fragment and the truncated E-cadherin-(Val3)-EC1-EC2 fragment, were carried out at three temperatures. Depending on the protein construct, a different binding epitope of the ligand and also a different temperature effect on STD signals were observed, both suggesting an involvement of the Asp1-Trp2 protein sequence among all the possible binding events. To interpret the experimental results at the atomic level and to probe the role of the cadherin adhesion arm in the dynamic interaction with the peptidomimetic ligand, a computational protocol based on docking calculations and molecular dynamics simulations was applied. In agreement with NMR data, the simulations at different temperatures unveil high variability/dynamism in ligand-cadherin binding, thus explaining the differences in ligand binding epitopes. In particular, the modulation of the signals seems to be dependent on the protein flexibility, especially at the level of the adhesive arm, which appears to participate in the interaction with the ligand. Overall, these results will help the design of novel cadherin inhibitors that might prevent the swap dimer formation by targeting both the Trp2 binding pocket and the adhesive arm residues.


Assuntos
Caderinas , Biologia Computacional/métodos , Espectroscopia de Ressonância Magnética/métodos , Peptidomiméticos , Caderinas/química , Caderinas/metabolismo , Humanos , Ligantes , Simulação de Dinâmica Molecular , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Ligação Proteica
4.
Molecules ; 25(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339382

RESUMO

Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly- Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid (cis-ß-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were examined in vitro in competitive binding assays to the purified αvß3 and α5ß1 receptors using biotinylated vitronectin (αvß3) and fibronectin (α5ß1) as natural displaced ligands. The IC50 values of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with a pronounced selectivity for αvß3 over α5ß1. In vitro cell adhesion assays were also performed using the human skin melanoma cell line WM115 (rich in integrin αvß3). The two RGD ligands showed IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and computational studies (MC/EM and MD), followed by docking simulations performed in the αVß3 integrin active site, provided a rationale for the behavior of these ligands toward the receptor.


Assuntos
Ácidos Carboxílicos/química , Fibronectinas/química , Integrina alfaVbeta3/química , Oligopeptídeos/química , Peptídeos Cíclicos/química , Peptidomiméticos/química , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Humanos , Concentração Inibidora 50 , Integrina alfaVbeta3/metabolismo , Isomerismo , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacologia
5.
Chemistry ; 25(51): 11831-11836, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31286579

RESUMO

Presented herein is a study of the conformation and reactivity of highly reactive thioglycoside donors. The structural studies have been conducted using NMR spectroscopy and computational methods. The reactivity of these donors has been investigated in bromine-promoted glycosylations of aliphatic and sugar alcohols. Swift reaction times, high yields, and respectable 1,2-cis stereoselectivity were observed in a majority of these glycosylations.

6.
Chemistry ; 25(23): 5959-5970, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30811704

RESUMO

Ligand-based control of protein functional motions can provide novel opportunities in the study of fundamental biological mechanisms and in the development of novel therapeutics. In this work we addressed the ligand-based modulation of integrin functions. Inhibitors of integrin αv ß3 are interesting anticancer agents but their molecular mechanisms are still unclear: Peptides and peptidomimetics characterized by the Arg-Gly-Asp (RGD) or isoAsp-Gly-Arg (isoDGR) binding motifs have shown controversial agonist/antagonist effects. We have investigated the differential mechanisms of integrin activation/deactivation by three distinct ligands (cyclo-RGDf(NMe)V (Cilengitide), cyclo[DKP3-RGD], cyclo[DKP3-isoDGR]; DKP=diketopiperazine) through a comparative analysis of ligand-controlled protein internal dynamics: Although RGD facilitates the onset of dynamic states leading to activation, isoDGR induces a diffuse rigidification of the complex consistent with antagonist activities. Computational predictions have been experimentally probed by showing that the antibody AP5, which is capable of recognizing the active form of integrin, binds specifically to the RGD complexes and not to the isoDGR complex, which supports opposite functional roles of the two motifs targeting the same binding site.

7.
Chemistry ; 24(54): 14448-14460, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-29975429

RESUMO

A library of mannose- and fucose-based glycomimetics was synthesized and screened in a microarray format against a set of C-type lectin receptors (CLRs) that included DC-SIGN, DC-SIGNR, langerin, and dectin-2. Glycomimetic ligands able to interact with dectin-2 were identified for the first time. Comparative analysis of binding profiles allowed their selectivity against other CLRs to be probed.

8.
PLoS Comput Biol ; 13(1): e1005334, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114375

RESUMO

Understanding how binding events modulate functional motions of multidomain proteins is a major issue in chemical biology. We address several aspects of this problem by analyzing the differential dynamics of αvß3 integrin bound to wild type (wtFN10, agonist) or high affinity (hFN10, antagonist) mutants of fibronectin. We compare the dynamics of complexes from large-scale domain motions to inter-residue coordinated fluctuations to characterize the distinctive traits of conformational evolution and shed light on the determinants of differential αvß3 activation induced by different FN sequences. We propose an allosteric model for ligand-based integrin modulation: the conserved integrin binding pocket anchors the ligand, while different residues on the two FN10's act as the drivers that reorganize relevant interaction networks, guiding the shift towards inactive (hFN10-bound) or active states (wtFN10-bound). We discuss the implications of results for the design of integrin inhibitors.


Assuntos
Descoberta de Drogas/métodos , Fibronectinas/química , Fibronectinas/ultraestrutura , Integrina alfaVbeta3/química , Integrina alfaVbeta3/ultraestrutura , Simulação de Dinâmica Molecular , Sítios de Ligação , Modelos Químicos , Ligação Proteica , Conformação Proteica , Domínios Proteicos
9.
Org Biomol Chem ; 13(9): 2570-3, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25614037
10.
Org Biomol Chem ; 11(23): 3886-93, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23657523

RESUMO

NMR experiments (transferred NOE and Saturation Transfer Difference) were used to shed light on the binding epitope of RGD peptidomimetics 1-3 with integrins αvß3 and α(IIb)ß3, expressed on the membrane of ECV304 bladder cancer cells and human platelets, respectively. The NMR results were supported by docking calculations of 1-3 in the active sites of αvß3 and α(IIb)ß3 integrin receptors and were compared to the results of competitive αvß3 receptor binding assays and competitive ECV304 cell adhesion experiments. While cis RGD ligand 1 interacts mainly with the α integrin subunit through its basic guanidine group, trans RGD ligands 2 and 3 are able to interact with both the α and ß integrin subunits via an electrostatic clamp.


Assuntos
Integrina alfaVbeta3/metabolismo , Modelos Moleculares , Peptídeos Cíclicos/química , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Plaquetas/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa