Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348885

RESUMO

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Assuntos
Benzamidas/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Mutação da Fase de Leitura , Heptanos/uso terapêutico , Humanos , Receptores de Imidazolinas/antagonistas & inibidores , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Transporte Vesicular/química
2.
Am J Pathol ; 192(2): 281-294, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861215

RESUMO

The health of the kidney filtration barrier requires communication among podocytes, endothelial cells, and mesangial cells. Disruption of these cell-cell interactions is thought to contribute to disease progression in chronic kidney diseases (CKDs). Podocyte ablation via doxycycline-inducible deletion of an essential endogenous molecule, CTCF [inducible podocyte-specific CTCF deletion (iCTCFpod-/-)], is sufficient to drive progressive CKD. However, the earliest events connecting podocyte injury to disrupted intercellular communication within the kidney filter remain unclear. Single-cell RNA sequencing of kidney tissue from iCTCFpod-/- mice after 1 week of doxycycline induction was performed to generate a map of the earliest transcriptional effects of podocyte injury on cell-cell interactions at single-cell resolution. A subset of podocytes had the earliest signs of injury due to disrupted gene programs for cytoskeletal regulation and mitochondrial function. Surviving podocytes up-regulated collagen type IV ɑ5, causing reactive changes in integrin expression in endothelial populations and mesangial cells. Intercellular interaction analysis revealed several receptor-ligand-target gene programs as drivers of endothelial cell injury and abnormal matrix deposition. This analysis reveals the earliest disruptive changes within the kidney filter, pointing to new, actionable targets within a therapeutic window that may allow us to maximize the success of much needed therapeutic interventions for CKDs.


Assuntos
Comunicação Celular , Podócitos , Insuficiência Renal Crônica , Análise de Célula Única , Transcriptoma , Animais , Camundongos , Camundongos Knockout , Podócitos/metabolismo , Podócitos/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
3.
Biochem Soc Trans ; 42(5): 1349-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25233414

RESUMO

Aberrant activation of fundamental cellular processes, such as proliferation, migration and survival, underlies the development of numerous human pathophysiologies, including cancer. One of the most frequently hyperactivated pathways in cancer is the phosphoinositide 3-kinase (PI3K)/Akt signalling cascade. Three isoforms of the serine/threonine protein kinase Akt (Akt1, Akt2 and Akt3) function to regulate cell survival, growth, proliferation and metabolism. Strikingly, non-redundant and even opposing functions of Akt isoforms in the regulation of phenotypes associated with malignancy in humans have been described. However, the mechanisms by which Akt isoform-specificity is conferred are largely unknown. In the present review, we highlight recent findings that have contributed to our understanding of the complexity of Akt isoform-specific signalling and discussed potential mechanisms by which this isoform-specificity is conferred. An understanding of the mechanisms of Akt isoform-specificity has important implications for the development of isoform-specific Akt inhibitors and will be critical to finding novel targets to treat disease.


Assuntos
Neoplasias da Mama/enzimologia , Modelos Biológicos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos
4.
Nat Commun ; 14(1): 1293, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894557

RESUMO

Systemic immunity supports lifelong brain function. Obesity posits a chronic burden on systemic immunity. Independently, obesity was shown as a risk factor for Alzheimer's disease (AD). Here we show that high-fat obesogenic diet accelerated recognition-memory impairment in an AD mouse model (5xFAD). In obese 5xFAD mice, hippocampal cells displayed only minor diet-related transcriptional changes, whereas the splenic immune landscape exhibited aging-like CD4+ T-cell deregulation. Following plasma metabolite profiling, we identified free N-acetylneuraminic acid (NANA), the predominant sialic acid, as the metabolite linking recognition-memory impairment to increased splenic immune-suppressive cells in mice. Single-nucleus RNA-sequencing revealed mouse visceral adipose macrophages as a potential source of NANA. In vitro, NANA reduced CD4+ T-cell proliferation, tested in both mouse and human. In vivo, NANA administration to standard diet-fed mice recapitulated high-fat diet effects on CD4+ T cells and accelerated recognition-memory impairment in 5xFAD mice. We suggest that obesity accelerates disease manifestation in a mouse model of AD via systemic immune exhaustion.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Ácido N-Acetilneuramínico , Camundongos Transgênicos , Transtornos da Memória/etiologia , Obesidade/complicações , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças
5.
Cell Mol Neurobiol ; 32(2): 201-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21850520

RESUMO

Intrachain disulfide bond formation among the cysteine thiols of SNAP-25, a component of the SNARE protein complex required for neurotransmitter release, has been hypothesized to link oxidative stress and inhibition of synaptic transmission. However, neither the availability in vivo of SNAP-25 thiols, which are known targets of S-palmitoylation, nor the tendency of these thiols to form intrachain disulfide bonds is known. We have examined, in rat brain extracts, both the availability of closely spaced, or vicinal, thiol pairs in SNAP-25 and the propensity of these dithiols toward disulfide bond formation using a method improved by us recently that exploits the high chemoselectivity of phenylarsine oxide (PAO) for vicinal thiols. The results show for the first time that a substantial fraction of soluble and, to a lesser extent, particulate SNAP-25 contain non-acylated PAO-binding thiol pairs and that these thiols in soluble SNAP-25 in particular have a high propensity toward disulfide bond formation. Indeed, disulfide bonds were detected in a small fraction of soluble SNAP-25 even under conditions designed to prevent or greatly limit protein thiol oxidation during experimental procedures. These results provide direct experimental support for the availability, in a subpopulation of SNAP-25, of vicinal thiols that may confer on one or more isoforms of this family of proteins a sensitivity to oxidative stress.


Assuntos
Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismo , Transmissão Sináptica/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Acilação , Animais , Arsenicais/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Solubilidade , Frações Subcelulares/metabolismo
6.
Cell Rep Med ; 1(8): 100137, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33294858

RESUMO

Drug repurposing has the advantage of identifying potential treatments on a shortened timescale. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high-content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce mucin-1 (MUC1) protein abundance. Elevated MUC1 levels predict the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) and correlate with poor clinical outcomes. Our screen identifies fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo, fostamatinib reduces MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro, SYK inhibition by the active metabolite R406 promotes MUC1 removal from the cell surface. Our work suggests fostamatinib as a repurposing drug candidate for ALI.

7.
JCI Insight ; 3(4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29467330

RESUMO

Progressive chronic kidney diseases (CKDs) are on the rise worldwide. However, the sequence of events resulting in CKD progression remain poorly understood. Animal models of CKD exploring these issues are confounded by systemic toxicities or surgical interventions to acutely induce kidney injury. Here we report the generation of a CKD mouse model through the inducible podocyte-specific ablation of an essential endogenous molecule, the chromatin structure regulator CCCTC-binding factor (CTCF), which leads to rapid podocyte loss (iCTCFpod-/-). As a consequence, iCTCFpod-/- mice develop severe progressive albuminuria, hyperlipidemia, hypoalbuminemia, and impairment of renal function, and die within 8-10 weeks. CKD progression in iCTCFpod-/- mice leads to high serum phosphate and elevations in fibroblast growth factor 23 (FGF23) and parathyroid hormone that rapidly cause bone mineralization defects, increased bone resorption, and bone loss. Dissection of the timeline leading to glomerular pathology in this CKD model led to the surprising observation that podocyte ablation and the resulting glomerular filter destruction is sufficient to drive progressive CKD and osteodystrophy in the absence of interstitial fibrosis. This work introduces an animal model with significant advantages for the study of CKD progression, and it highlights the need for podocyte-protective strategies for future kidney therapeutics.


Assuntos
Reabsorção Óssea/etiologia , Fator de Ligação a CCCTC/deficiência , Modelos Animais de Doenças , Podócitos/patologia , Insuficiência Renal Crônica/patologia , Animais , Reabsorção Óssea/sangue , Reabsorção Óssea/patologia , Fator de Ligação a CCCTC/genética , Calcificação Fisiológica/genética , Progressão da Doença , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Taxa de Filtração Glomerular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hormônio Paratireóideo/sangue , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética
8.
Science ; 358(6368): 1332-1336, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217578

RESUMO

Progressive kidney diseases are often associated with scarring of the kidney's filtration unit, a condition called focal segmental glomerulosclerosis (FSGS). This scarring is due to loss of podocytes, cells critical for glomerular filtration, and leads to proteinuria and kidney failure. Inherited forms of FSGS are caused by Rac1-activating mutations, and Rac1 induces TRPC5 ion channel activity and cytoskeletal remodeling in podocytes. Whether TRPC5 activity mediates FSGS onset and progression is unknown. We identified a small molecule, AC1903, that specifically blocks TRPC5 channel activity in glomeruli of proteinuric rats. Chronic administration of AC1903 suppressed severe proteinuria and prevented podocyte loss in a transgenic rat model of FSGS. AC1903 also provided therapeutic benefit in a rat model of hypertensive proteinuric kidney disease. These data indicate that TRPC5 activity drives disease and that TRPC5 inhibitors may be valuable for the treatment of progressive kidney diseases.


Assuntos
Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Hipertensão Renal/tratamento farmacológico , Indazóis/farmacologia , Proteinúria/tratamento farmacológico , Canais de Cátion TRPC/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/genética , Mutação , Podócitos/efeitos dos fármacos , Ratos , Ratos Endogâmicos Dahl , Ratos Transgênicos , Bibliotecas de Moléculas Pequenas , Canais de Cátion TRPC/farmacologia , Proteínas rac1 de Ligação ao GTP/genética
10.
Cell Rep ; 13(3): 479-488, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26456828

RESUMO

Chromatin factors have emerged as the most frequently dysregulated family of proteins in cancer. We have previously identified the histone deacetylase SIRT6 as a key tumor suppressor, yet whether point mutations are selected for in cancer remains unclear. In this manuscript, we characterized naturally occurring patient-derived SIRT6 mutations. Strikingly, all the mutations significantly affected either stability or catalytic activity of SIRT6, indicating that these mutations were selected for in these tumors. Further, the mutant proteins failed to rescue sirt6 knockout (SIRT6 KO) cells, as measured by the levels of histone acetylation at glycolytic genes and their inability to rescue the tumorigenic potential of these cells. Notably, the main activity affected in the mutants was histone deacetylation rather than demyristoylation, pointing to the former as the main tumor-suppressive function for SIRT6. Our results identified cancer-associated point mutations in SIRT6, cementing its function as a tumor suppressor in human cancer.


Assuntos
Neoplasias/genética , Mutação Puntual , Sirtuínas/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular , Glicólise/genética , Humanos , Camundongos , Dados de Sequência Molecular , Sirtuínas/genética , Sirtuínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa