Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34983867

RESUMO

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Assuntos
Mudança Climática , Árvores/fisiologia , Ecossistema , Fertilidade/fisiologia , Geografia , América do Norte , Incerteza
2.
New Phytol ; 239(3): 830-838, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37219920

RESUMO

The periodic production of large seed crops, or masting, is a widespread phenomenon in perennial plants. This behavior can enhance the reproductive efficiency of plants, leading to increased fitness, and produce ripple effects on food webs. While variability from year to year is a defining characteristic of masting, the methods used to quantify this variability are highly debated. The commonly used coefficient of variation lacks the ability to account for the serial dependence in mast data and can be influenced by zeros, making it a less suitable choice for various applications based on individual-level observations, such as phenotypic selection, heritability, and climate change studies, which rely on individual-plant-level datasets that often contain numerous zeros. To address these limitations, we present three case studies and introduce volatility and periodicity, which account for the variance in the frequency domain by emphasizing the significance of long intervals in masting. By utilizing examples of Sorbus aucuparia, Pinus pinea, Quercus robur, Quercus pubescens, and Fagus sylvatica, we demonstrate how volatility captures the effects of variance at both high and low frequencies, even in the presence of zeros, leading to improved ecological interpretations of the results. The growing availability of long-term, individual-plant datasets promises significant advancements in the field, but requires appropriate tools for analysis, which the new metrics provide.


Assuntos
Fagus , Pinus , Quercus , Reprodução , Sementes
3.
Glob Chang Biol ; 29(22): 6399-6414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789712

RESUMO

Understanding community responses to climate is critical for anticipating the future impacts of global change. However, despite increased research efforts in this field, models that explicitly include important biological mechanisms are lacking. Quantifying the potential impacts of climate change on species is complicated by the fact that the effects of climate variation may manifest at several points in the biological process. To this end, we extend a dynamic mechanistic model that combines population dynamics, such as species interactions, with species redistribution by allowing climate to affect both processes. We examine their relative contributions in an application to the changing biomass of a community of eight species in the Gulf of Maine using over 30 years of fisheries data from the Northeast Fishery Science Center. Our model suggests that the mechanisms driving biomass trends vary across space, time, and species. Phase space plots demonstrate that failing to account for the dynamic nature of the environmental and biologic system can yield theoretical estimates of population abundances that are not observed in empirical data. The stock assessments used by fisheries managers to set fishing targets and allocate quotas often ignore environmental effects. At the same time, research examining the effects of climate change on fish has largely focused on redistribution. Frameworks that combine multiple biological reactions to climate change are particularly necessary for marine researchers. This work is just one approach to modeling the complexity of natural systems and highlights the need to incorporate multiple and possibly interacting biological processes in future models.


Assuntos
Ecossistema , Crescimento Demográfico , Animais , Biomassa , Dinâmica Populacional , Previsões , Pesqueiros , Mudança Climática , Peixes
4.
Ecol Appl ; 33(3): e2815, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717358

RESUMO

Datasets that monitor biodiversity capture information differently depending on their design, which influences observer behavior and can lead to biases across observations and species. Combining different datasets can improve our ability to identify and understand threats to biodiversity, but this requires an understanding of the observation bias in each. Two datasets widely used to monitor bird populations exemplify these general concerns: eBird is a citizen science project with high spatiotemporal resolution but variation in distribution, effort, and observers, whereas the Breeding Bird Survey (BBS) is a structured survey of specific locations over time. Analyses using these two datasets can identify contradictory population trends. To understand these discrepancies and facilitate data fusion, we quantify species-level reporting differences across eBird and the BBS in three regions across the United States by jointly modeling bird abundances using data from both datasets. First, we fit a joint Species Distribution Model that accounts for environmental conditions and effort to identify reporting differences across the datasets. We then examine how these differences in reporting are related to species traits. Finally, we analyze species reported to one dataset but not the other and determine whether traits differ between reported and unreported species. We find that most species are reported more in the BBS than eBird. Specifically, we find that compared to eBird, BBS observers tend to report higher counts of common species and species that are usually detected by sound. We also find that species associated with water are reported less in the BBS. Species typically identified by sound are reported more at sunrise than later in the morning. Our results quantify reporting differences in eBird and the BBS to enhance our understanding of how each captures information and how they should be used. The reporting rates we identify can also be incorporated into observation models through detectability or effort to improve analyses across species and datasets. The method demonstrated here can be used to compare reporting rates across any two or more datasets to examine biases.


Assuntos
Biodiversidade , Aves , Animais , Viés
5.
Nature ; 550(7674): 105-108, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28953870

RESUMO

The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.


Assuntos
Biodiversidade , Florestas , Análise Espaço-Temporal , Árvores/fisiologia , Clima Tropical , Mapeamento Geográfico , Reprodução , Estações do Ano , Fatores de Tempo , Árvores/crescimento & desenvolvimento
6.
Proc Natl Acad Sci U S A ; 117(29): 17074-17083, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632009

RESUMO

Observational studies have not yet shown that environmental variables can explain pervasive nonlinear patterns of species abundance, because those patterns could result from (indirect) interactions with other species (e.g., competition), and models only estimate direct responses. The experiments that could extract these indirect effects at regional to continental scales are not feasible. Here, a biophysical approach quantifies environment- species interactions (ESI) that govern community change from field data. Just as species interactions depend on population abundances, so too do the effects of environment, as when drought is amplified by competition. By embedding dynamic ESI within framework that admits data gathered on different scales, we quantify responses that are induced indirectly through other species, including probabilistic uncertainty in parameters, model specification, and data. Simulation demonstrates that ESI are needed for accurate interpretation. Analysis demonstrates how nonlinear responses arise even when their direct responses to environment are linear. Applications to experimental lakes and the Breeding Bird Survey (BBS) yield contrasting estimates of ESI. In closed lakes, interactions involving phytoplankton and their zooplankton grazers play a large role. By contrast, ESI are weak in BBS, as expected where year-to-year movement degrades the link between local population growth and species interactions. In both cases, nonlinear responses to environmental gradients are induced by interactions between species. Stability analysis indicates stability in the closed-system lakes and instability in BBS. The probabilistic framework has direct application to conservation planning that must weigh risk assessments for entire habitats and communities against competing interests.


Assuntos
Biodiversidade , Modelos Biológicos , Animais , Aves , Mudança Climática , Espécies em Perigo de Extinção , Ciência Ambiental , Cadeia Alimentar , Lagos , Especificidade da Espécie
7.
Clin Infect Dis ; 75(1): e928-e937, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35247047

RESUMO

BACKGROUND: Children are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes substantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity. METHODS: We collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and respiratory symptoms. RESULTS: Nasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-CoV-2-infected individuals with and without respiratory symptoms (PERMANOVA, P  = .002; R2 = 0.009). SARS-CoV-2-infected participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18-.81). Using generalized joint attributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among SARS-CoV-2-infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age. CONCLUSIONS: We identified interactive relationships between age and specific nasopharyngeal microbiome features that are associated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.


Assuntos
COVID-19 , Microbiota , Adolescente , Bactérias/genética , Criança , Humanos , Microbiota/genética , Nasofaringe/microbiologia , SARS-CoV-2 , Adulto Jovem
8.
Environ Microbiol ; 21(10): 3862-3872, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31286605

RESUMO

Recent studies have focused on linking marine microbial communities with environmental factors, yet, relatively little is known about the drivers of microbial community patterns across the complex gradients from the nearshore to open ocean. Here, we examine microbial dynamics in 15 five-station transects beginning at the estuarine Piver's Island Coastal Observatory (PICO) time-series site and continuing 87 km across the continental shelf to the oligotrophic waters of the Sargasso Sea. 16S rRNA gene libraries reveal strong clustering by sampling site with distinct nearshore, continental shelf and offshore oceanic communities. Water temperature and distance from shore (which serves as a proxy for gradients in factors such as productivity, terrestrial input and nutrients) both most influence community composition. However, at the phylotype level, modelling shows the distribution of some taxa is linked to temperature, others to distance from shore and some by both factors, highlighting that taxa with distinct environmental preferences underlie apparent clustering by station. Thus, continental margins contain microbial communities that are distinct from those of either the nearshore or the offshore environments and contain mixtures of phylotypes with nearshore or offshore preferences rather than those unique to the shelf environment.


Assuntos
Cianobactérias/classificação , Microbiota/genética , Roseobacter/classificação , Água do Mar/microbiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Oceanos e Mares , RNA Ribossômico 16S/genética , Roseobacter/genética , Roseobacter/isolamento & purificação , Temperatura
9.
Ecology ; 99(3): 607-620, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29281752

RESUMO

Arbuscular mycorrhizal (AM) fungi in the soil may influence tropical tree dynamics and forest succession. The mechanisms are poorly understood, because the functional characteristics and abundances of tree species and AM fungi are likely to be codependent. We used generalized joint attribute modeling to evaluate if AM fungi are associated with three forest community metrics for a sub-tropical montane forest in Puerto Rico. The metrics chosen to reflect changes during forest succession are the abundance of seedlings of different successional status, the amount of foliar damage on seedlings of different successional status, and community-weighted mean functional trait values (adult specific leaf area [SLA], adult wood density, and seed mass). We used high-throughput DNA sequencing to identify fungal operational taxonomic units (OTUs) in the soil. Model predictions showed that seedlings of mid- and late-successional species had less leaf damage when the 12 most common AM fungi were abundant compared to when these fungi were absent. We also found that seedlings of mid-successional species were predicted to be more abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. In contrast, early-successional tree seedlings were predicted to be less abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. Finally, we showed that, among the 12 most common AM fungi, different AM fungi were correlated with functional trait characteristics of early- or late-successional species. Together, these results suggest that early-successional species might not rely as much as mid- and late-successional species on AM fungi, and AM fungi might accelerate forest succession.


Assuntos
Micorrizas/genética , Fungos , Porto Rico , Plântula/microbiologia , Microbiologia do Solo , Árvores/microbiologia
10.
Glob Chang Biol ; 23(9): 3501-3512, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28380283

RESUMO

We evaluated the effect on soil CO2 efflux (FCO2 ) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2 ) ranging 1.0-1.8 times ambient did not affect FCO2 . FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer than the 10 days observed for decrease of FCO2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of FCO2 following the initiation of eCO2 . The reduction of FCO2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and FCO2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on FCO2 .


Assuntos
Dióxido de Carbono , Ecossistema , Solo/química , Fotossíntese , Folhas de Planta
11.
Ecology ; 97(8): 1979-1993, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859208

RESUMO

Trait analysis aims to understand relationships between traits, species diversity, and the environment. Current methods could benefit from a model-based probabilistic framework that accommodates covariance between traits and quantifies contributions from inherent trait syndromes, species interactions, and responses to the environment. I develop a model-based approach that separates these effects on trait diversity. Application to USDA Forest Inventory and Analysis (FIA) data in the eastern United States demonstrates an apparent paradox, that the analysis of species better explains and predicts traits than does direct analysis of the traits themselves; trait data contain less, not more, information than species on environmental responses. Whereas variation in some traits is dominated by inherent syndromes (tendency for certain traits to be associated with others within an individual and species), others are strongly controlled by variation in species diversity. There is substantial variation in environmental control on trait patterns, between traits and regionally. In terms of environmental response traits do not aggregate into defined plant functional types, as would be desirable for models.


Assuntos
Biodiversidade , Florestas , Fenótipo , Plantas , Ecologia
12.
Glob Chang Biol ; 22(7): 2329-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26898361

RESUMO

We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.


Assuntos
Biodiversidade , Secas , Florestas , Ecossistema , Árvores , Estados Unidos
13.
Ecol Appl ; 26(1): 17-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27039506

RESUMO

Recent forest diebacks, combined with threats of future drought, focus attention on the extent to which tree death is caused by catastrophic events as opposed to chronic declines in health that accumulate over years. While recent attention has focused on large-scale diebacks, there is concern that increasing drought stress and chronic morbidity may have pervasive impacts on forest composition in many regions. Here we use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 yr. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with drought tolerance. These findings support the ability of trees to avoid death during drought events but indicate shifts that could occur over decades. Tree mortality following drought is predictable in these ecosystems based on growth declines, highlighting an opportunity to address multiyear drought-induced morbidity in models, experiments, and management decisions.


Assuntos
Secas , Florestas , Árvores/fisiologia , North Carolina , Especificidade da Espécie , Fatores de Tempo , Árvores/classificação
14.
Oecologia ; 180(4): 1223-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26747267

RESUMO

Climatic effects on tree recruitment will be determined by the interactive effects of fecundity and seed predation. Evaluating how insect and vertebrate seed predators mediate tree reproductive responses to climate depends on long-term studies of seed production, development, and predation. In this study, our objectives were to (1) assess the effects of interannual climate variation on seed abortion rates, (2) assess the impact of seed density on predation rates, and (3) examine the degree to which density-dependent seed predation would amplify or dampen interannual variation in fecundity associated with seed abortion. We used a 19-year study of seed abortion and pre-dispersal predation rates by insects and vertebrates (birds and rodents) for five temperate tree species across forest plots from the North Carolina Piedmont to the Southern Appalachian Mountains in the southeastern USA. We found that rates of seed abortion and predation increased reproductive variation for oaks (Quercus species). Probability of seed abortion was greatest during years with cool, dry springs. Responses of seed predation on Quercus species to current year's seed density varied by species, but exhibited positive density-dependence to previous year's seed density consistent with numerical responses of seed predators. Seed abortion and predation rates for two drupe species responded little to variation in climate or seed density, respectively. Given that predation increased interannual variation in seed availability and the negative density-dependence to previous year's seed density, our results indicate that consistent numerical responses of oak seed predators may amplify interannual variation due to climate-mediated processes like seed abortion.


Assuntos
Clima , Comportamento Alimentar , Florestas , Insetos/fisiologia , Quercus/fisiologia , Sementes/crescimento & desenvolvimento , Vertebrados/fisiologia , Animais , Região dos Apalaches , Aves/fisiologia , Comportamento Predatório , Quercus/crescimento & desenvolvimento , Reprodução/fisiologia , Roedores/fisiologia , Sudeste dos Estados Unidos
15.
Adv Exp Med Biol ; 875: 977-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26611058

RESUMO

Right whales are vulnerable to many sources of anthropogenic disturbance including ship strikes, entanglement with fishing gear, and anthropogenic noise. The effect of these factors on individual health is unclear. A statistical model using photographic evidence of health was recently built to infer the true or hidden health of individual right whales. However, two important prior assumptions about the role of missing data and unexplained variance on the estimates were not previously assessed. Here we tested these factors by varying prior assumptions and model formulation. We found sensitivity to each assumption and used the output to make guidelines on future model formulation.


Assuntos
Saúde , Modelos Teóricos , Baleias/fisiologia , Animais
16.
Ecology ; 96(9): 2319-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26594690

RESUMO

Density dependence could maintain diversity in forests, but studies continue to disagree on its role. Part of the disagreement results from the fact that different studies have evaluated different responses (survival, recruitment, or growth) of different stages (seeds, seedlings, or adults) to different inputs (density of seedlings, density or distance to adults). Most studies are conducted on a single site and thus are difficult to generalize. Using USDA Forest Service's Forest Inventory and Analysis data, we analyzed over a million seedling-to-sapling recruitment observations of 50 species from the eastern United States, controlling for the effects of climate. We focused on the per-seedling recruitment rate, because it is most likely to promote diversity and to be identified in observational or experimental data. To understand the prevalence of density dependence, we quantified the number of species with significant positive or negative effects. To understand the strength of density dependence, we determined the magnitude of effects among con- and heterospecifics, and how it changes with overall species abundance. We found that density dependence is pervasive among the 50 species, as the majority of them have significant effects and mostly negative. Density-dependence effects are stronger from conspecific than heterospecfic adult neighbors, consistent with the predictions of the Janzen-Connell hypothesis. Contrary to recent reports, density-dependence effects are more negative for common than rare species, suggesting disproportionately stronger population regulation in common species. We conclude that density dependence is pervasive, and it is strongest from conspecific neighbors of common species. Our analysis provides direct evidence that density dependence reaulates opulation dynamics of tree species in eastern U.S. forests.


Assuntos
Ecossistema , Árvores/fisiologia , Agricultura Florestal , Modelos Biológicos , Modelos Estatísticos , Densidade Demográfica , Dinâmica Populacional , Estados Unidos
17.
Glob Chang Biol ; 20(4): 1136-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24115181

RESUMO

Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models.


Assuntos
Modelos Biológicos , Desenvolvimento Vegetal , Acer/crescimento & desenvolvimento , Clima , Aquecimento Global , North Carolina , Estações do Ano , Temperatura , Árvores/crescimento & desenvolvimento
18.
Glob Chang Biol ; 20(6): 1979-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24932467

RESUMO

The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate­competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Teorema de Bayes , Modelos Biológicos , North Carolina
19.
Glob Chang Biol ; 20(1): 251-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24014498

RESUMO

Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.


Assuntos
Biodiversidade , Mudança Climática , Árvores/crescimento & desenvolvimento , Modelos Teóricos , Estados Unidos
20.
Ecol Appl ; 24(5): 990-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25154092

RESUMO

The perceived threat of climate change is often evaluated from species distribution models that are fitted to many species independently and then added together. This approach ignores the fact that species are jointly distributed and limit one another. Species respond to the same underlying climatic variables, and the abundance of any one species can be constrained by competition; a large increase in one is inevitably linked to declines of others. Omitting this basic relationship explains why responses modeled independently do not agree with the species richness or basal areas of actual forests. We introduce a joint species distribution modeling approach (JSDM), which is unique in three ways, and apply it to forests of eastern North America. First, it accommodates the joint distribution of species. Second, this joint distribution includes both abundance and presence-absence data. We solve the common issue of large numbers of zeros in abundance data by accommodating zeros in both stem counts and basal area data, i.e., a new approach to zero inflation. Finally, inverse prediction can be applied to the joint distribution of predictions to integrate the role of climate risks across all species and identify geographic areas where communities will change most (in terms of changes in abundance) with climate change. Application to forests in the eastern United States shows that climate can have greatest impact in the Northeast, due to temperature, and in the Upper Midwest, due to temperature and precipitation. Thus, these are the regions experiencing the fastest warming and are also identified as most responsive at this scale.


Assuntos
Mudança Climática , Florestas , Modelos Biológicos , Temperatura , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa