Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 64(7): 1190-209, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27100937

RESUMO

Axonal pathology is a key contributor to long-term disability in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), but the mechanisms that underlie axonal pathology in MS remain elusive. Evidence suggests that axonal pathology is a direct consequence of demyelination, as we and others have shown that the node of Ranvier disassembles following loss of myelin. In contrast to the node of Ranvier, we now show that the axon initial segment (AIS), the axonal domain responsible for action potential initiation, remains intact following cuprizone-induced cortical demyelination. Instead, we find that the AIS is disrupted in the neocortex of mice that develop experimental autoimmune encephalomyelitis (EAE) independent of local demyelination. EAE-induced mice demonstrate profound compromise of AIS integrity with a progressive disruption that corresponds to EAE clinical disease severity and duration, in addition to cortical microglial reactivity. Furthermore, treatment with the drug didox results in attenuation of AIS pathology concomitantly with microglial reversion to a less reactive state. Together, our findings suggest that inflammation, but not demyelination, disrupts AIS integrity and that therapeutic intervention may protect and reverse this pathology. GLIA 2016;64:1190-1209.


Assuntos
Segmento Inicial do Axônio/fisiologia , Axônios/patologia , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica/fisiologia , Microglia/metabolismo , Animais , Animais Geneticamente Modificados , Doenças Autoimunes do Sistema Nervoso/induzido quimicamente , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/patologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Cuprizona/toxicidade , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Hidroxâmicos/uso terapêutico , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Inibidores da Monoaminoxidase/toxicidade , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Front Cell Dev Biol ; 11: 1113675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875755

RESUMO

The corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamus are critical regulators of the neuroendocrine stress response pathway, known as the hypothalamic-pituitary-adrenal (HPA) axis. As developmental vulnerabilities of CRH neurons contribute to stress-associated neurological and behavioral dysfunctions, it is critical to identify the mechanisms underlying normal and abnormal CRH neuron development. Using zebrafish, we identified Down syndrome cell adhesion molecule like-1 (dscaml1) as an integral mediator of CRH neuron development and necessary for establishing normal stress axis function. In dscaml1 mutant animals, hypothalamic CRH neurons had higher crhb (the CRH homolog in zebrafish) expression, increased cell number, and reduced cell death compared to wild-type controls. Physiologically, dscaml1 mutant animals had higher baseline stress hormone (cortisol) levels and attenuated responses to acute stressors. Together, these findings identify dscaml1 as an essential factor for stress axis development and suggest that HPA axis dysregulation may contribute to the etiology of human DSCAML1-linked neuropsychiatric disorders.

3.
Front Cell Dev Biol ; 9: 654338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268301

RESUMO

An emerging area of interest in Neuroscience is the cellular relationship between glia and blood vessels, as many of the presumptive support roles of glia require an association with the vasculature. These interactions are best studied in vivo and great strides have been made using mice to longitudinally image glial-vascular interactions. However, these methods are cumbersome for developmental studies, which could benefit from a more accessible system. Zebrafish (Danio rerio) are genetically tractable vertebrates, and given their translucency, are readily amenable for daily live imaging studies. We set out to examine whether zebrafish glia have conserved traits with mammalian glia regarding their ability to interact with and maintain the developing brain vasculature. We utilized transgenic zebrafish strains in which oligodendrocyte transcription factor 2 (olig2) and glial fibrillary acidic protein (gfap) identify different glial populations in the zebrafish brain and document their corresponding relationship with brain blood vessels. Our results demonstrate that olig2+ and gfap+ zebrafish glia have distinct lineages and each interact with brain vessels as previously observed in mouse brain. Additionally, we manipulated these relationships through pharmacological and genetic approaches to distinguish the roles of these cell types during blood vessel development. olig2+ glia use blood vessels as a pathway during their migration and Wnt signaling inhibition decreases their single-cell vessel co-option. By contrast, the ablation of gfap+ glia at the beginning of CNS angiogenesis impairs vessel development through a reduction in Vascular endothelial growth factor (Vegf), supporting a role for gfap+ glia during new brain vessel formation in zebrafish. This data suggests that zebrafish glia, akin to mammalian glia, have different lineages that show diverse interactions with blood vessels, and are a suitable model for elucidating glial-vascular relationships during vertebrate brain development.

4.
Front Mol Neurosci ; 13: 587978, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505244

RESUMO

Connexins are transmembrane proteins that form hemichannels allowing the exchange of molecules between the extracellular space and the cell interior. Two hemichannels from adjacent cells dock and form a continuous gap junction pore, thereby permitting direct intercellular communication. Connexin 36 (Cx36), expressed primarily in neurons, is involved in the synchronous activity of neurons and may play a role in aberrant synchronous firing, as seen in seizures. To understand the reciprocal interactions between Cx36 and seizure-like neural activity, we examined three questions: (a) does Cx36 deficiency affect seizure susceptibility, (b) does seizure-like activity affect Cx36 expression patterns, and (c) does acute blockade of Cx36 conductance increase seizure susceptibility. We utilize the zebrafish pentylenetetrazol [PTZ; a GABA(A) receptor antagonist] induced seizure model, taking advantage of the compact size and optical translucency of the larval zebrafish brain to assess how PTZ affects brain-wide neuronal activity and Cx36 protein expression. We exposed wild-type and genetic Cx36-deficient (cx35.5-/-) zebrafish larvae to PTZ and subsequently mapped neuronal activity across the whole brain, using phosphorylated extracellular-signal-regulated kinase (pERK) as a proxy for neuronal activity. We found that cx35.5-/- fish exhibited region-specific susceptibility and resistance to PTZ-induced hyperactivity compared to wild-type controls, suggesting that genetic Cx36 deficiency may affect seizure susceptibility in a region-specific manner. Regions that showed increased PTZ sensitivity include the dorsal telencephalon, which is implicated in human epilepsy, and the lateral hypothalamus, which has been underexplored. We also found that PTZ-induced neuronal hyperactivity resulted in a rapid reduction of Cx36 protein levels within 30 min. This Cx36 reduction persists after 1-h of recovery but recovered after 3-6 h. This acute downregulation of Cx36 by PTZ is likely maladaptive, as acute pharmacological blockade of Cx36 by mefloquine results in increased susceptibility to PTZ-induced neuronal hyperactivity. Together, these results demonstrate a reciprocal relationship between Cx36 and seizure-associated neuronal hyperactivity: Cx36 deficiency contributes region-specific susceptibility to neuronal hyperactivity, while neuronal hyperactivity-induced downregulation of Cx36 may increase the risk of future epileptic events.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa